MHB Question on the Irreducibility of Polynomials

  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Polynomials
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading Dummit and Foote on Polynomial Rings. In particular I am seeking to understand Section 9.4 on Irreducibility Criteria.

Proposition 9 in Section 9.4 reads as follows:

Proposition 9. Let F be a field and let p(x) \in F[x]. Then p(x) has a factor of degree one if and only if p(x) has a root in F i.e. there is an \alpha \in F with p( \alpha ) = 0

Then D&F state that Proposition 9 gives a criterion for irreducibility for polynomials of small degree

D&F then state Proposition 10 as follows:

Proposition 10: A polynomial of degree two or three over a field F is reducible if and only if it has a root in FBUT! Here is my problem - why does not a root in F imply reducibility in polynomials of all degrees? A root in F means, I think, that the polynomial concerned has a linear factor and hence can be factored into a linear factor times a polynomial of degree n-1?

Can anyone clarify this for me?

Peter

[This question has also been posted on MHF]
 
Physics news on Phys.org
Peter said:
BUT! Here is my problem - why does not a root in F imply reducibility in polynomials of all degrees? A root in F means, I think, that the polynomial concerned has a linear factor and hence can be factored into a linear factor times a polynomial of degree n-1?

You are right, but take into account that proposition 10 says if and only if. For example consider $F=\mathbb{R}$ and $p(x)=(x^2+1)(x^2+2)$. This polynomial is obviously reducible in $\mathbb{R} [x]$ and has no real roots.
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
Back
Top