yungman
- 5,741
- 291
For plane wave travel in +ve z direction in a charge free medium, the wave equation is:
\frac{\partial^2 \widetilde{E}}{\partial z^2} -\gamma^2 \widetilde E = 0
Where \gamma^2 = - k_c^2 ,\;\; k_c= \omega \sqrt {\mu \epsilon_c} \hbox { and } \epsilon_c = \epsilon_0 \epsilon_r -j\frac{\sigma}{\omega} .
\widetilde E = E_0^+ e^{-\gamma z} \;+\; E_0^- e^{\gamma z} \;=\; E_0^+ e^{-\alpha z}e^{-j \beta z} \;+\; E_0^- e^{\alpha z}e^{j \beta z}
Notice the second term is the reflected wave AND is growing in magnitude as it move in -ve z direction! That cannot be true. It should still decay at rate of e^{-\alpha z }.
What am I missing?
\frac{\partial^2 \widetilde{E}}{\partial z^2} -\gamma^2 \widetilde E = 0
Where \gamma^2 = - k_c^2 ,\;\; k_c= \omega \sqrt {\mu \epsilon_c} \hbox { and } \epsilon_c = \epsilon_0 \epsilon_r -j\frac{\sigma}{\omega} .
\widetilde E = E_0^+ e^{-\gamma z} \;+\; E_0^- e^{\gamma z} \;=\; E_0^+ e^{-\alpha z}e^{-j \beta z} \;+\; E_0^- e^{\alpha z}e^{j \beta z}
Notice the second term is the reflected wave AND is growing in magnitude as it move in -ve z direction! That cannot be true. It should still decay at rate of e^{-\alpha z }.
What am I missing?
Last edited: