MHB Question via email about complex numbers

AI Thread Summary
The discussion focuses on mapping the region defined by |z| ≥ 5 under the transformation w = z^2. It establishes that any complex number can be expressed in polar form, leading to the conclusion that if |z| = r ≥ 5, then |z^2| = r^2 ≥ 25. Consequently, the image of the region under the mapping w = z^2 is everything on or outside the circle defined by |w| ≥ 25. However, a correction is noted that the radius should be interpreted as 5, not 25, leading to a circle of radius 5. The final graphical representation emphasizes the correct shading of the required region.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
Plot the image of the region $\displaystyle \begin{align*} \left| z \right| \geq 5 \end{align*}$ under the mapping $\displaystyle \begin{align*} w = z^2 \end{align*}$.

We should note that we can write any complex number as $\displaystyle \begin{align*} z = r\,\mathrm{e}^{\mathrm{i}\,\theta} \end{align*}$ where $\displaystyle \begin{align*} r = \left| z \right| \end{align*}$ and $\displaystyle \begin{align*} \theta = \textrm{arg}\,\left( z \right) + 2\,\pi\,n , \,\, n \in \mathbf{Z} \end{align*}$. So that means

$\displaystyle \begin{align*} z &= r\,\mathrm{e}^{\mathrm{i}\,\theta} \\ \\ z^2 &= \left( r\, \mathrm{e}^{\mathrm{i}\,\theta} \right) ^2 \\ &= r^2\,\mathrm{e}^{2\,\mathrm{i}\,\theta} \end{align*}$

thus if $\displaystyle \begin{align*} \left| z \right| = r \geq 5 \end{align*}$ then that means $\displaystyle \begin{align*} \left| z^2 \right| = r^2 \geq 25 \end{align*}$. Since $\displaystyle \begin{align*} \theta \end{align*}$ can take on any value, that means that $\displaystyle \begin{align*} 2\,\theta \end{align*}$ also can, and thus the region defined by $\displaystyle \begin{align*} w = z^2 \end{align*}$ must be everything on or outside of the circle defined by $\displaystyle \begin{align*} \left| z^2 \right| \geq 25 \end{align*}$, so in other words, everything on or outside the circle centred at the origin of radius 25 units.

So graphically we have (using the standard convention of shading the region that is not required)...

View attachment 5663
 

Attachments

  • complex number graph.JPG
    complex number graph.JPG
    42.8 KB · Views: 137
Mathematics news on Phys.org
Essentially correct except that 25 is the radius squared. So make it a circle radius 5.
 
  • Like
Likes Greg Bernhardt
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top