MHB Question: What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

  • Thread starter Thread starter juantheron
  • Start date Start date
AI Thread Summary
The value of ⌊ 2020/(1+2+3+...+2019)⌋ is derived from analyzing the factorials involved. The discussion outlines a method to express n! in terms of sums of factorials, leading to inequalities that help establish bounds. It concludes that for n ≥ 4, the relationship holds that n! is greater than a certain sum of factorials. By applying this reasoning specifically for n = 2010, the final result is determined to be 2018. Thus, the value of the original expression is 2018.
juantheron
Messages
243
Reaction score
1
Finding value of $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots +2019!}\bigg\rfloor$
 
Mathematics news on Phys.org
My attempt:
For $n > 2$ the following is true:

\[F_n = \left \lfloor \frac{(n+1)!}{1!+2!+3!+...+n!} \right \rfloor = n-1\]

Proof by induction:
Base cases:
\[F_3 =\left \lfloor \frac{4!}{1!+2!+3!} \right \rfloor = \left \lfloor \frac{24}{9} \right \rfloor = 2. \\\\ F_4 = \left \lfloor \frac{5!}{1!+2!+3!+4!} \right \rfloor = \left \lfloor \frac{120}{33} \right \rfloor = 3.\]

Suppose the identity holds for some n = m > 4. We need to show, that the identity also holds for n = m+1.

We have the identity: \[ F_m =\left \lfloor \frac{(m+1)!}{1!+2!+3!+...+m!} \right \rfloor = m-1.\]

To ease the algebra, let \[\sigma = 1!+2!+3!+...+m!\]

Then, we can write:

\[F_{m+1}=\left \lfloor \frac{(m+2)!}{1!+2!+3!+...+(m+1)!} \right \rfloor \\\\ =\left \lfloor \frac{(m+1)!}{\sigma +(m+1)!}(m+2) \right \rfloor\\\\ =\left \lfloor \frac{\frac{(m+1)!}{\sigma }}{1+\frac{(m+1)!}{\sigma }}(m+2) \right \rfloor\]

We know, that \[\frac{(m+1)!}{\sigma } = m-1+\varepsilon\] for some $0< \varepsilon<1$.

In other words: \[F_{m+1} =\left \lfloor \frac{m-1+\varepsilon }{m + \varepsilon }(m+2) \right \rfloor =\left \lfloor \left ( 1-\frac{1}{m+\varepsilon } \right )(m+2) \right \rfloor\]

Now, the fraction $\frac{m+2}{m+\varepsilon}$ has the sharp limits: \[1 < \frac{m+2}{m+\varepsilon } <2\]

This follows from the inequalities: $\varepsilon < 2 < m +2\varepsilon$

Thus the fraction can be written as: $\frac{m+2}{m+\varepsilon} = 1+\delta$ for some $0 < \delta < 1$.
Finally, we get

\[F_{m+1} =\left \lfloor m+2- (1+\delta )\right \rfloor = \left \lfloor m \right \rfloor+\left \lfloor 1-\delta \right \rfloor = m.\] q.e.d.- and we conclude, that $F_{2019}= 2018.$
 
Thanks Ifdahl for nice solution

Here is mine

[sp]Using $n!=n(n-1)! = [(n-1)+1](n-1)! = (n-1)(n-1)!+(n-1)(n-2)!$

So $(n-1)(n-1)!+(n-1)(n-2)!<(n-1)(n-1)!+(n-1)(n-2)!+(n-1)(n-3)!+\cdots (n-1)1!\;\forall n\geq 4$

So $n!<(n-1)\bigg[(n-1)!+(n-2)!+(n-3)!+\cdots +2!+1!\bigg]\cdots \cdots (1)$

And $n!=n(n-1)!=[(n-2)+2](n-1)!=(n-2)(n-1)!+2(n-1)!=(n-2)(n-1)!+2(n-1)(n-2)!$

So $n!=(n-2)(n-1)!+(n-2)(n-2)!+n(n-2)(n-3)!$

As $n(n-3)!>(n-3)!+(n-4)!+\cdots +2!+1!\forall n\geq 4$

So $n(n-2)(n-3)!>(n-2)\bigg[(n-3)!+(n-4)!+\cdots +2!+1!\bigg]$

So $n!>(n-2)\bigg[(n-1)!+(n-2)!+\cdots\cdots +2!+1!\bigg]\cdots \cdots (2)$

From $(1)$ and $(2),$ We have

$\displaystyle (n-2)<\frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}<(n-1)$

So we get $\displaystyle \bigg\lfloor \frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}\bigg \rfloor =(n-2)$

Now put $n=2010,$ We get $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots \cdots +2019!}\bigg \rfloor =2018$[/sp]
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top