Question: What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

  • Context: MHB 
  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
SUMMARY

The value of ⌊ 2020/(1+2+3+...+2019)⌋ is determined to be 2018. This conclusion is derived from the analysis of factorials, specifically using the relationship between n! and the sum of factorials from 1! to (n-1)!. The discussion outlines a methodical approach to establish that ⌊ n!/(1!+2!+3!+...+(n-1)!)⌋ equals (n-2) for n ≥ 4, leading to the specific case of n=2010 yielding the final result of 2018.

PREREQUISITES
  • Understanding of factorial notation and properties
  • Familiarity with mathematical inequalities
  • Basic knowledge of limits and floor functions
  • Experience with mathematical proofs and derivations
NEXT STEPS
  • Study the properties of factorial growth rates
  • Learn about mathematical induction techniques
  • Explore advanced topics in combinatorial mathematics
  • Investigate the applications of floor functions in number theory
USEFUL FOR

Mathematicians, students studying combinatorics, educators teaching factorial concepts, and anyone interested in advanced mathematical proofs and inequalities.

juantheron
Messages
243
Reaction score
1
Finding value of $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots +2019!}\bigg\rfloor$
 
Mathematics news on Phys.org
My attempt:
For $n > 2$ the following is true:

\[F_n = \left \lfloor \frac{(n+1)!}{1!+2!+3!+...+n!} \right \rfloor = n-1\]

Proof by induction:
Base cases:
\[F_3 =\left \lfloor \frac{4!}{1!+2!+3!} \right \rfloor = \left \lfloor \frac{24}{9} \right \rfloor = 2. \\\\ F_4 = \left \lfloor \frac{5!}{1!+2!+3!+4!} \right \rfloor = \left \lfloor \frac{120}{33} \right \rfloor = 3.\]

Suppose the identity holds for some n = m > 4. We need to show, that the identity also holds for n = m+1.

We have the identity: \[ F_m =\left \lfloor \frac{(m+1)!}{1!+2!+3!+...+m!} \right \rfloor = m-1.\]

To ease the algebra, let \[\sigma = 1!+2!+3!+...+m!\]

Then, we can write:

\[F_{m+1}=\left \lfloor \frac{(m+2)!}{1!+2!+3!+...+(m+1)!} \right \rfloor \\\\ =\left \lfloor \frac{(m+1)!}{\sigma +(m+1)!}(m+2) \right \rfloor\\\\ =\left \lfloor \frac{\frac{(m+1)!}{\sigma }}{1+\frac{(m+1)!}{\sigma }}(m+2) \right \rfloor\]

We know, that \[\frac{(m+1)!}{\sigma } = m-1+\varepsilon\] for some $0< \varepsilon<1$.

In other words: \[F_{m+1} =\left \lfloor \frac{m-1+\varepsilon }{m + \varepsilon }(m+2) \right \rfloor =\left \lfloor \left ( 1-\frac{1}{m+\varepsilon } \right )(m+2) \right \rfloor\]

Now, the fraction $\frac{m+2}{m+\varepsilon}$ has the sharp limits: \[1 < \frac{m+2}{m+\varepsilon } <2\]

This follows from the inequalities: $\varepsilon < 2 < m +2\varepsilon$

Thus the fraction can be written as: $\frac{m+2}{m+\varepsilon} = 1+\delta$ for some $0 < \delta < 1$.
Finally, we get

\[F_{m+1} =\left \lfloor m+2- (1+\delta )\right \rfloor = \left \lfloor m \right \rfloor+\left \lfloor 1-\delta \right \rfloor = m.\] q.e.d.- and we conclude, that $F_{2019}= 2018.$
 
Thanks Ifdahl for nice solution

Here is mine

[sp]Using $n!=n(n-1)! = [(n-1)+1](n-1)! = (n-1)(n-1)!+(n-1)(n-2)!$

So $(n-1)(n-1)!+(n-1)(n-2)!<(n-1)(n-1)!+(n-1)(n-2)!+(n-1)(n-3)!+\cdots (n-1)1!\;\forall n\geq 4$

So $n!<(n-1)\bigg[(n-1)!+(n-2)!+(n-3)!+\cdots +2!+1!\bigg]\cdots \cdots (1)$

And $n!=n(n-1)!=[(n-2)+2](n-1)!=(n-2)(n-1)!+2(n-1)!=(n-2)(n-1)!+2(n-1)(n-2)!$

So $n!=(n-2)(n-1)!+(n-2)(n-2)!+n(n-2)(n-3)!$

As $n(n-3)!>(n-3)!+(n-4)!+\cdots +2!+1!\forall n\geq 4$

So $n(n-2)(n-3)!>(n-2)\bigg[(n-3)!+(n-4)!+\cdots +2!+1!\bigg]$

So $n!>(n-2)\bigg[(n-1)!+(n-2)!+\cdots\cdots +2!+1!\bigg]\cdots \cdots (2)$

From $(1)$ and $(2),$ We have

$\displaystyle (n-2)<\frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}<(n-1)$

So we get $\displaystyle \bigg\lfloor \frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}\bigg \rfloor =(n-2)$

Now put $n=2010,$ We get $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots \cdots +2019!}\bigg \rfloor =2018$[/sp]
 

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
998
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 6 ·
Replies
6
Views
791
  • · Replies 1 ·
Replies
1
Views
1K