MHB Question: What is the value of ⌊ 2020/(1+2+3+...+2019)⌋?

  • Thread starter Thread starter juantheron
  • Start date Start date
Click For Summary
The value of ⌊ 2020/(1+2+3+...+2019)⌋ is derived from analyzing the factorials involved. The discussion outlines a method to express n! in terms of sums of factorials, leading to inequalities that help establish bounds. It concludes that for n ≥ 4, the relationship holds that n! is greater than a certain sum of factorials. By applying this reasoning specifically for n = 2010, the final result is determined to be 2018. Thus, the value of the original expression is 2018.
juantheron
Messages
243
Reaction score
1
Finding value of $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots +2019!}\bigg\rfloor$
 
Mathematics news on Phys.org
My attempt:
For $n > 2$ the following is true:

\[F_n = \left \lfloor \frac{(n+1)!}{1!+2!+3!+...+n!} \right \rfloor = n-1\]

Proof by induction:
Base cases:
\[F_3 =\left \lfloor \frac{4!}{1!+2!+3!} \right \rfloor = \left \lfloor \frac{24}{9} \right \rfloor = 2. \\\\ F_4 = \left \lfloor \frac{5!}{1!+2!+3!+4!} \right \rfloor = \left \lfloor \frac{120}{33} \right \rfloor = 3.\]

Suppose the identity holds for some n = m > 4. We need to show, that the identity also holds for n = m+1.

We have the identity: \[ F_m =\left \lfloor \frac{(m+1)!}{1!+2!+3!+...+m!} \right \rfloor = m-1.\]

To ease the algebra, let \[\sigma = 1!+2!+3!+...+m!\]

Then, we can write:

\[F_{m+1}=\left \lfloor \frac{(m+2)!}{1!+2!+3!+...+(m+1)!} \right \rfloor \\\\ =\left \lfloor \frac{(m+1)!}{\sigma +(m+1)!}(m+2) \right \rfloor\\\\ =\left \lfloor \frac{\frac{(m+1)!}{\sigma }}{1+\frac{(m+1)!}{\sigma }}(m+2) \right \rfloor\]

We know, that \[\frac{(m+1)!}{\sigma } = m-1+\varepsilon\] for some $0< \varepsilon<1$.

In other words: \[F_{m+1} =\left \lfloor \frac{m-1+\varepsilon }{m + \varepsilon }(m+2) \right \rfloor =\left \lfloor \left ( 1-\frac{1}{m+\varepsilon } \right )(m+2) \right \rfloor\]

Now, the fraction $\frac{m+2}{m+\varepsilon}$ has the sharp limits: \[1 < \frac{m+2}{m+\varepsilon } <2\]

This follows from the inequalities: $\varepsilon < 2 < m +2\varepsilon$

Thus the fraction can be written as: $\frac{m+2}{m+\varepsilon} = 1+\delta$ for some $0 < \delta < 1$.
Finally, we get

\[F_{m+1} =\left \lfloor m+2- (1+\delta )\right \rfloor = \left \lfloor m \right \rfloor+\left \lfloor 1-\delta \right \rfloor = m.\] q.e.d.- and we conclude, that $F_{2019}= 2018.$
 
Thanks Ifdahl for nice solution

Here is mine

[sp]Using $n!=n(n-1)! = [(n-1)+1](n-1)! = (n-1)(n-1)!+(n-1)(n-2)!$

So $(n-1)(n-1)!+(n-1)(n-2)!<(n-1)(n-1)!+(n-1)(n-2)!+(n-1)(n-3)!+\cdots (n-1)1!\;\forall n\geq 4$

So $n!<(n-1)\bigg[(n-1)!+(n-2)!+(n-3)!+\cdots +2!+1!\bigg]\cdots \cdots (1)$

And $n!=n(n-1)!=[(n-2)+2](n-1)!=(n-2)(n-1)!+2(n-1)!=(n-2)(n-1)!+2(n-1)(n-2)!$

So $n!=(n-2)(n-1)!+(n-2)(n-2)!+n(n-2)(n-3)!$

As $n(n-3)!>(n-3)!+(n-4)!+\cdots +2!+1!\forall n\geq 4$

So $n(n-2)(n-3)!>(n-2)\bigg[(n-3)!+(n-4)!+\cdots +2!+1!\bigg]$

So $n!>(n-2)\bigg[(n-1)!+(n-2)!+\cdots\cdots +2!+1!\bigg]\cdots \cdots (2)$

From $(1)$ and $(2),$ We have

$\displaystyle (n-2)<\frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}<(n-1)$

So we get $\displaystyle \bigg\lfloor \frac{n!}{1!+2!+3!+\cdots \cdots +(n-1)!}\bigg \rfloor =(n-2)$

Now put $n=2010,$ We get $\displaystyle \bigg\lfloor \frac{2020!}{1!+2!+3!+\cdots \cdots +2019!}\bigg \rfloor =2018$[/sp]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 19 ·
Replies
19
Views
3K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 11 ·
Replies
11
Views
3K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K