Questions about Noether's theorem -- Conservation of Energy and Mass

Click For Summary

Discussion Overview

The discussion revolves around Noether's theorem and its implications for conservation laws in physics, specifically concerning invariance under transformations related to time and space. Participants explore the connections between invariance and conservation of energy, mass, momentum, and angular momentum, as well as the nature of symmetries in physics.

Discussion Character

  • Exploratory
  • Technical explanation
  • Conceptual clarification
  • Debate/contested

Main Points Raised

  • Some participants assert that conservation of energy is associated with invariance in time, while conservation of momentum relates to spatial invariance.
  • One participant challenges the notion of conservation of mass, stating that it does not correspond to a symmetry of space or time in the non-relativistic case.
  • There is a proposal that Noether's theorem provides a framework from which conservation laws can be derived, with some suggesting it can be viewed as a procedure or algorithm rather than a model.
  • Participants discuss the broader implications of symmetry, including reflection symmetry and its distinction from rotational symmetry, questioning how these concepts apply to physical objects and spacetime geometry.
  • One participant expresses a desire for clarification on the concept of symmetry, indicating a need for deeper understanding.

Areas of Agreement / Disagreement

Participants express differing views on the relationship between conservation laws and symmetries, particularly regarding conservation of mass. The discussion includes multiple competing perspectives on the nature of symmetries and their implications in physics, indicating that consensus has not been reached.

Contextual Notes

Some claims depend on specific interpretations of symmetries and transformations, and there are references to advanced concepts such as the Bargmann algebra and Galilei boosts that may not be universally understood. The discussion also touches on the limitations of applying conservation laws in certain contexts.

Agent Smith
Messages
345
Reaction score
36
Very basic question ... Heard someone say that Noether's theorem talks about, among other things, invariance (under transformation). Further, possibilities were discussed:
1. Invariance in time
2. Invariance in space

3. Conservation of energy (kinetic?)
4. Conservation of mass

I forgot which goes with which. Is conservation of energy about invariance in time and conservation of mass about invariance in space or is it the opposite?

Please help.
 
Physics news on Phys.org
Agent Smith said:
I forgot which goes with which. Is conservation of energy about invariance in time and conservation of mass about invariance in space or is it the opposite?
Energy goes with time invariance. Momentum goes with spatial invariance (translations). Angular momentum goes with invariance under rotations.
 
  • Like
Likes   Reactions: Agent Smith and renormalize
Agent Smith said:
I forgot which goes with which. Is conservation of energy about invariance in time and conservation of mass about invariance in space or is it the opposite?

Please help.
Invariance and Noether's theorem have the implications:
  • Invariance under translations in time ##\Rightarrow## conservation of total energy.
  • Invariance under translations in space ##\Rightarrow## conservation of total linear momentum.
  • Invariance under rotations ##\Rightarrow## conservation of total angular momentum.
  • BONUS: invariance under electromagnetic gauge transformations ##\Rightarrow## conservation of total electric charge.
But there is no "conservation of mass"; e.g., massive electrons and positrons can annihilate to create pairs of massless photons.
 
  • Like
Likes   Reactions: Agent Smith and jbriggs444
@jbriggs444 and @renormalize muchas gracias. 💯 💯

What does Noether's theorem actually do? Does it provide a mathematical "model" from which the conservation laws emerge/follow? I can imagine creating a/using a preexisting mathematical "object" that can parse transformations and then mapping the trasnformations and properties that are invariant under those transformations to physics entities like passage of time/movement through space and energy/momentum.
 
Agent Smith said:
Very basic question ... Heard someone say that Noether's theorem talks about, among other things, invariance (under transformation). Further, possibilities were discussed:
1. Invariance in time
2. Invariance in space

3. Conservation of energy (kinetic?)
4. Conservation of mass

I forgot which goes with which. Is conservation of energy about invariance in time and conservation of mass about invariance in space or is it the opposite?

Please help.
This is a good question. No, conservation of mass is in the non-relativistic case not described by a symmetry of space or time. In the so-called Bargmann algebra it is described by a central extension of the Galilei group, and one cannot assign spacetime transformations to it. See also chapter 3 of

https://pure.rug.nl/ws/portalfiles/portal/34926446/Complete_thesis.pdf

One can reinterpret this transformation as a spatial symmetry by extending space with an extra dimension, but I can't find the paper anymore and I don't remember the details anymore (and I guess it's a bit contrived for what you ask for).

By the way, the Galilei boosts also have conserved charges along with them, but they aren't very illuminating. See e.g.

https://physics.stackexchange.com/q...ariant-associated-with-the-symmetry-of-boosts
 
  • Like
Likes   Reactions: Agent Smith
Agent Smith said:
@jbriggs444 and @renormalize muchas gracias. 💯 💯

What does Noether's theorem actually do? Does it provide a mathematical "model" from which the conservation laws emerge/follow? I can imagine creating a/using a preexisting mathematical "object" that can parse transformations and then mapping the trasnformations and properties that are invariant under those transformations to physics entities like passage of time/movement through space and energy/momentum.
In modern physics, one often takes symmetries as a starting point. The continuous symmetries then generate conservation laws, which you calculate by using Noether's theorem. So your question is answered "yes", although I'd rather talk of a procedure or algorithm instead of "model" ;)
 
  • Like
Likes   Reactions: Agent Smith
haushofer said:
symmetries
For faults that are my own, I'm fixated on reflection symmetry. It seems that symmetry has a more general meaning e.g. in rotational symmetry, there's invariance: we're unable to distinguish, post-rotation, the preimage from the image. Do you have the time to explain symmetry to me? Gracias
 
Agent Smith said:
For faults that are my own, I'm fixated on reflection symmetry.
What do you think reflection symmetry means in the context of spacetime geometry? Do you think that physical objects can undergo reflective transformations?

Agent Smith said:
It seems that symmetry has a more general meaning e.g. in rotational symmetry, there's invariance: we're unable to distinguish, post-rotation, the preimage from the image.
[Edit: this paragraph doesn't really say what I intended to say, so please don't nitpick it, but I will let it stand because the intention is to make @Agent Smith think about the differences between the symmetries of an object and of a geometry]. This is also the case for translational and rotational symmetry. However it is not the case for reflection symmetry. Does this affect what you think about the questions above?

Agent Smith said:
Do you have the time to explain symmetry to me?
No, but Wikipedia does:
https://en.wikipedia.org/wiki/Symmetry_(physics)
https://en.wikipedia.org/wiki/Symmetry_(geometry)
 
Last edited:
  • Like
  • Haha
Likes   Reactions: Agent Smith, Motore and jim mcnamara
Agent Smith said:
Heard someone sa
Here we go again. Do the PF guidelines on sources mean nothing to you?
 
  • Haha
Likes   Reactions: Agent Smith
  • #10
Agent Smith said:
For faults that are my own, I'm fixated on reflection symmetry. It seems that symmetry has a more general meaning e.g. in rotational symmetry, there's invariance: we're unable to distinguish, post-rotation, the preimage from the image. Do you have the time to explain symmetry to me? Gracias
An expression has a symmetry if a change of coordinates leaves the expression invariant. E.g. the inner product between 2 vectors is invariant under a rotation. That's it, I guess 😋
 
  • Like
Likes   Reactions: Agent Smith

Similar threads

  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 5 ·
Replies
5
Views
1K
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
5K
  • · Replies 26 ·
Replies
26
Views
6K