Questions about the energy of a wave as a Taylor series

Click For Summary
SUMMARY

The energy of a wave can be expressed as a Taylor series expansion, specifically E = ao + a1 A + a2 A², where the energy is not strictly proportional to the square of the amplitude. This discussion highlights that energy does not depend on phase, leading to the exclusion of odd terms in the series. The relationship between energy and amplitude is derived from the properties of sine and cosine functions, where cosine represents even powers and sine represents odd powers. Understanding this relationship is crucial for grasping wave mechanics and energy distribution.

PREREQUISITES
  • Understanding of Taylor series expansion
  • Familiarity with wave mechanics and harmonic oscillators
  • Knowledge of sine and cosine functions
  • Basic principles of energy in physical systems
NEXT STEPS
  • Study the derivation of Taylor series in relation to wave energy
  • Explore the implications of phase in wave mechanics
  • Investigate the differences between sine and cosine functions in energy calculations
  • Learn about energy distribution in various waveforms
USEFUL FOR

Students and professionals in physics, particularly those focused on wave mechanics, energy distribution, and mathematical modeling of physical phenomena.

Chump
Messages
9
Reaction score
0
I've read that, in general, the energy of a wave, as opposed to what's commonly taught, isn't strictly related to the square of the amplitude. It can be seen to be related to a Taylor series, where E = ao + a1 A + a2A2 ... Also, that the energy doesn't depend on phase, so only even terms will occur and the Taylor series gets truncated to only be proportional to the amplitude squared.

My questions are:

  • Is there a derivation/more in-depth explanation of how the Taylor series came about for relating energy to amplitude?
  • Why doesn't energy depend on phase? (My guess is because it's based on a simple harmonic oscillator model)
  • Since phase isn't important, why will the odd terms in the series not be important? How are those two things related?
 
Physics news on Phys.org
Chump said:
I've read that, in general, the energy of a wave, as opposed to what's commonly taught, isn't strictly related to the square of the amplitude. It can be seen to be related to a Taylor series, where E = ao + a1 A + a2A2

Wait... what? How exactly is the energy of wave is due to "a Taylor series" and how does the Taylor series have anything to do with a description of a wave?

Where exactly did you get this idea?

Zz.
 
Then shouldn't you be asking this THERE? I don't understand why we at PF are the ones who have to clean up other people's mess.

Zz.
 
OK. First, I've asked this there already. It was pretty much the first thing I did. I could not get in touch with Ben Cromwell on the site. Also, no one else from that site gave an answer. Further, I could not get in touch with Ben via his outside site. I believe I've taken all of the proper channels, and I'd just like a little bit of insight from other avenues, if possible. You don't need to "clean up any mess." If you don't have any helpful insight, please move along because I didn't approach this in a disrespectful way. I'd appreciate it if no disrespect came my way. Thank you.
 
Chump said:
Since phase isn't important, why will the odd terms in the series not be important?
I am puzzled by that one too. @bcrowell knows his stuff, so I am pretty confident it is right, but it isn’t obvious to me either.
 
Chump said:
Is there a derivation/more in-depth explanation of how the Taylor series came about for relating energy to amplitude?
Ben is just saying that the energy E of the wave can be thought of as a function of its amplitude A, so we can expand this function E(A) in a Taylor series about A=0.
 
Dale said:
I am puzzled by that one too. @bcrowell knows his stuff, so I am pretty confident it is right, but it isn’t obvious to me either.
Nearest explanation I can come up with is...

Taylor series for a sin wave has odd powers...

Sin(X) = X1 - X3/3! + X5/5! -...

and a cos has even powers.

Cos(X) = 1 - X2/2! + X4/4! -...

Difference between cos and sin is phase.

But I'm not sure I believe that deleting one set or the other from a general series of both makes it ignore phase.

If your function is a sin wave and you delete the odd terms to remove phase what are you left with?
 
CWatters said:
Difference between cos and sin is phase.
That makes sense, but then why pick the cos instead of the sin. That seems like cos waves carry energy and sin waves don’t.

Edit: oh, that is even and odd powers of X not of A.
 

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
10K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
6K
  • · Replies 78 ·
3
Replies
78
Views
6K
Replies
8
Views
15K
  • · Replies 0 ·
Replies
0
Views
5K