DrChinese said:
As to the title of the great EPR paper: perhaps you should refresh yourself with EPR's primary conclusion, which was proven and is generally accepted: If Quantum Mechanics is complete (i.e. there is no better description of the state of the system - my words), then there cannot be simultaneous reality to non-commuting operators. The contranegative is also true: if there is simultaneous reality to non-commuting operators, then Quantum Mechanics is incomplete.
I've been over this with you a million times before, but... for the benefit of any intelligent lurkers... the above represents a failure to grasp what is at issue in the EPR argument, and what they were trying to argue for. Dr C suggests that the thrust of the EPR paper was to argue for the following statement: if QM is complete, then there cannot be simultaneous reality to non-commuting operators/observables.
But that's not even the kind of thing one needs to argue for. It's simply a *definition* of completeness -- or more specifically, it's a clear litmus test for completeness in the context of a theory which simply doesn't *allow* the assignment of simultaneous definite values to non-commuting operators. It's just a given that, in orthodox QM, you can't do this. And so, to whatever extent, out there in physical reality, such observables *do* possesses simultaneous definite values, then orthodox QM is not complete.
So not only is that not the main thing EPR are arguing for, it's not the kind of thing one needs to argue for at all. To understand what the statement means is to see it as obviously true. The hard part is to construct some kind of argument that, in fact, out there in physical reality, such observables (i.e., those corresponding respectively to non-commuting operators) do possesses simultaneous definite values. And Dr C seems to completely miss that there is something like this argument in EPR, though, admittedly, it is hard to understand because of the way Podolsky wrote the manuscript. (Einstein didn't see the final draft and got mad that Podolsky had "buried" the main argument.) But now we know what Einstein had in mind. The argument was fundamentally based on *locality*. See "Einstein's Boxes" for further details.
EPR then speculates as follows: a) that there is simultaneous reality to non-commuting operators MUST be true; therefore QM is incomplete;
This is a ridiculous piece of trash. As a fan of Einstein I'm personally insulted that someone would publicly suggest that this was the EPR argument. I mean, come on. Einstein "speculates" (i.e., just makes up arbitrarily because he feels like it, not based on any argument) that observables corresponding to non-commuting operators "MUST" have simultaneous definite values? He just makes it up? I mean, please. It's a disgusting insult to the greatest physicist ever. Anyone who has a shred of respect for the great man should realize, if they think this was the argument, that maybe they just haven't *understood* the argument yet... and so they should go back and do some homework to find out what Einstein actually thought, rather than spread vicious lies and confusions that make Einstein sound like a moron.
or b) there exists non-local forces (spooky action at a distance).
Look, the argument is that *unless* one accepts spooky nonlocal forces, one must posit certain elements of reality. There's an actual *argument* there. If you haven't understood the argument, go back and study the issue some more. But don't keep spouting this nonsense that Einstein just arbitrarily "speculated" that it was a or b... Sheesh.
Since Einstein did not believe b) was true, this shows that he believed in a) and ultimately that the predictions of QM could not hold in this case.
Where did Einstein ever say that "the predictions of QM could not hold"? Actually the whole EPR argument (or his Boxes version) is premised on the predictions of QM being true. The whole argument is that the only way to explain certain correlations (namely, those *predicted by QM*) LOCALLY is to posit certain "hidden variables".
This speculation is what ultimately led to Bell's paper, which showed that: if QM is incomplete but otherwise correct in its predictions, then there must exist non-local forces.
You misunderstand this as well. One needn't assume that "QM is incomplete" in order to derive a Bell type inequality. The inequality follows from locality (a certain mathematically precise definition thereof which Bell first articulated) alone. That's it. Of course, it is possible to get a Bell inequality by first assuming certain hidden variables (and locality). But this doesn't change what I just said, since the existence of those hidden variables is itself a logical consequence of the locality assumption. That, as Bell points out repeatedly in his papers, is the EPR argument. Locality *requires* those hidden variables. So if Bell assumes them (and sometimes he does, but not always and it isn't logically necessary) it doesn't matter one way or the other. Either way, the inequality follows from Locality alone. The only question is whether one gets there in one step or two.
I don't expect to change your mind on any of this since I've tried so many times before and failed completely. But I can't in good conscience sit here and watch you disgustingly pervert these beautiful arguments. Not in front of what might (for all I know) be innocent children.