Get Quick Help with Factoring Homework - (x-1)y^2 + (1-x^2) Simplified

  • Thread starter Thread starter Loppyfoot
  • Start date Start date
  • Tags Tags
    Factoring
Click For Summary
SUMMARY

The discussion focuses on factoring the expression \(((x-1)y^2) + (1 - x^2)\). Participants confirm that it is possible to reach the form \((x-1)(y^2 - x - 1)\) through proper manipulation of the terms. Key steps include factoring \(1 - x^2\) correctly and applying the difference of squares formula \(a^2 - b^2 = (a - b)(a + b)\). The conversation emphasizes the importance of correctly identifying and factoring terms to achieve the desired expression.

PREREQUISITES
  • Understanding of polynomial factoring techniques
  • Familiarity with the difference of squares formula
  • Basic algebraic manipulation skills
  • Knowledge of factoring expressions involving variables
NEXT STEPS
  • Study the difference of squares formula in depth
  • Practice factoring polynomials with multiple variables
  • Learn advanced algebraic manipulation techniques
  • Explore common factoring mistakes and how to avoid them
USEFUL FOR

Students studying algebra, educators teaching polynomial factoring, and anyone seeking to improve their skills in algebraic manipulation and expression simplification.

Loppyfoot
Messages
192
Reaction score
0

Homework Statement


Could someone help me factor,
((x-1)y^2)+(1-(x^2))





The Attempt at a Solution


Is it possible to get to:
(x-1)(y^2-x-1)?
 
Physics news on Phys.org
Yes, it is possible to get there.

Work with the left-hand term; 1-x2. When you factor that, things should start looking more manageable.
 
So I get (x-1)y^2 + (1-x)(1-x)

Where do I go from there in order to factor out the (x-1)?
 
Loppyfoot said:
So I get (x-1)y^2 + (1-x)(1-x)

Where do I go from there in order to factor out the (x-1)?

What happens if you take out a -1 from one of the terms on the right?
 
Oh so, I got (x-1)y^2 - (x+1)(x-1) COrrect?
 
Last edited:
You can take out -1 from just the right-hand term.

(x-1)y^2 + (1-x)(1-x) = (x-1)y^2 + (-1) (?) (1-x)
 
Ok, so I got: (x-1)y^2 - (x+1)(x-1)
 
Loppyfoot said:
Ok, so I got: (x-1)y^2 - (x+1)(x-1)

Incorrect. Look at the bolded term again. You're only taking -1 out of one quantity in the parentheses.
 
Oh, so would it be:
(x-1)y^2 - (-x-1)(x-1)?

But how do I get to:
(x-1)(y^2-x-1)?
 
  • #10
Oops, sorry, in post #3 you made an error which I didn't notice initially.

Loppyfoot said:
So I get (x-1)y^2 + (1-x)(1-x)

You need to factor this correctly for it to make any sense. Once you have it factored correctly and you take out a (-1) from one of the terms in the parentheses, you should be able to then rearrange the expression into something that resembles what you're trying to show.

Hint: you already know how the result needs to look. Use this to your advantage...
 
  • #11
All you really need are these 3 rules:

a^2-b^2=(a-b)(a+b)

ab=-(-a)(b)=-(a)(-b)

ab+ac=a(b+c)

Notice the first difference of two squares, as fss has pointed out you have made a mistake in factoring the 1-x2, so fix that first before moving on.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
Replies
2
Views
2K
Replies
8
Views
4K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
10
Views
2K
Replies
3
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K