Quick question about Linear Transformations from a space to itself

Click For Summary
A linear transformation T: W -> W does not inherently provide information about its injectivity or surjectivity without additional context. If W has finite dimensions, T is injective if and only if it is surjective. The discussion highlights confusion regarding the image of T, particularly when it is not surjective, suggesting it may map to a subspace of W instead of W itself. Examples of various transformations are provided to illustrate different outcomes regarding their injectivity and surjectivity. Overall, the conversation emphasizes the need for more specific information to draw conclusions about the properties of T.
Fractal20
Messages
71
Reaction score
1
Hi, I have to take a placement exam in linear algebra this fall so I have been studying some past exams. This is a real basic question. If we have a linear transformation T:W -> W does this imply nothing about the injectivity or surjectivity of the transformation? I assume that it does not, but I get confused because if it is not surjective, then it seems like the image of T is not W but some subspace of W.

To phrase it in a different way, does T: W -> W only say that T maps vectors in W to other vectors in W and nothing about what the image in W is? Thanks!
 
Physics news on Phys.org
Fractal20 said:
Hi, I have to take a placement exam in linear algebra this fall so I have been studying some past exams. This is a real basic question. If we have a linear transformation T:W -> W does this imply nothing about the injectivity or surjectivity of the transformation? I assume that it does not, but I get confused because if it is not surjective, then it seems like the image of T is not W but some subspace of W.

To phrase it in a different way, does T: W -> W only say that T maps vectors in W to other vectors in W and nothing about what the image in W is? Thanks!


Yes, you can say almost nothing about T without more information, but you can always be sure that if \,\dim W<\infty\, , then T is 1-1 iff T is onto.
 
Maybe one can say something if the scalar field is the complexes, namely there is at least one subspace of dimension one that maps into itself, which is actually another version of micromass's comment.
 
Fractal20 said:
Hi, I have to take a placement exam in linear algebra this fall so I have been studying some past exams. This is a real basic question. If we have a linear transformation T:W -> W does this imply nothing about the injectivity or surjectivity of the transformation? I assume that it does not, but I get confused because if it is not surjective, then it seems like the image of T is not W but some subspace of W.

To phrase it in a different way, does T: W -> W only say that T maps vectors in W to other vectors in W and nothing about what the image in W is? Thanks!

Have you seen the Rank-Nullity theorem? Consider this:

Ti: ℝ4→ℝ4 ; i=1,2,..,5:

T1(x1,x2,x3,x4)=(0,0,0,0) . What is the dimension of the image

T2(x1,x2,x3,x4)=(x1,x1,x1,x1). Is it 1-1 ?

T3(x1,x2,x3,x4)=(x1,x2,0,0). Onto?

T4(x1,x2,x3,x4)=(x1,x2,x3,0) . Onto?
 
Bacle2 said:
Have you seen the Rank-Nullity theorem? Consider this:

Ti: ℝ4→ℝ4 ; i=1,2,..,5:

T1(x1,x2,x3,x4)=(0,0,0,0) . What is the dimension of the image

T2(x1,x2,x3,x4)=(x1,x1,x1,x1). Is it 1-1 ?

T3(x1,x2,x3,x4)=(x1,x2,0,0). Onto?

T4(x1,x2,x3,x4)=(x1,x2,x3,0) . Onto?


Thanks, that makes it obvious. I guess I assumed as much but felt unsure in the sense of specificity of the image. ie for T1 it is really mapped to 0. So if W = the vector space spanned by x1, ... , x5 then in some ways I feel like saying T1 W -> W is misleading since it is really T: W -> 0. But I understand that it is about generality.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 4 ·
Replies
4
Views
3K