Quick question about normal distributions

Click For Summary
The discussion revolves around calculating probabilities related to the lifetimes of two types of batteries, Duxcell and Infinitycell, which are normally distributed. For part b, the user correctly identifies the need to combine variances when assessing the probability that an Infinitycell battery lasts more than twice as long as a Duxcell battery, leading to the use of the standard deviation of sqrt(20). In part c, the user calculates the total standard deviation for two Duxcell batteries in sequence by adding their variances, resulting in a different approach than in part b. The distinction arises from the nature of the calculations, where part b involves a transformation of a single battery's lifetime, while part c considers the cumulative effect of two batteries used in succession. The user seeks clarification on these differing methodologies.
doctordiddy
Messages
53
Reaction score
0

Homework Statement



You purchase a chainsaw, and can buy one of two types of batteries to power it, namely Duxcell and Infinitycell. Batteries of each type have lifetimes before recharge that can be assumed independent and Normally distributed. The mean and standard deviation of the lifetimes of the Duxcell batteries are 10 and 2 minutes respectively, the mean and standard deviation for the Infinitycell batteries are 19 and 2 minutes respectively.
Part a) What is the probability that a Duxcell battery will last longer than an Infinitycell battery? Give your answer to two decimal places.

Part b) What is the probability that an Infinitycell battery will last more than twice as long as a Duxcell battery? Give your answer to two decimal places.

Part c) You are going to cut down a large tree and do not want to break off from the job to recharge your chainsaw battery. You buy two Duxcell batteries, and plan to use one until it runs out of power, after which you immediately replace it with the second battery. How long (in minutes) can the job last so that with probability 0.75 you can complete the job using the two Duxcell batteries in sequence?

Provide your answer to 1 decimal place.

Homework Equations


[/B]
z=(x-mean)/StdDev

The Attempt at a Solution



Just wanted to verify something quickly, for part b I had to use sqrt(20) as my standard deviation. I got this because I added the standard deviation of each battery:
sqrt(2^2 (for the infinitycell) + 4^2 (for the duxcell))

Meanwhile for part c), the total standard deviation I used was sqrt(2^2 +2^2), since it is 2 for each (duxcell).

My question is, in part b I could simply double the duxcell battery standard deviation, while in c I had to treat each battery standard deviation separately, and first convert to variance before i could add them. Is this due to the difference between double the duration (part b) and two batteries in sequence (part c)?

Thanks
 
Physics news on Phys.org
doctordiddy said:

Homework Statement



You purchase a chainsaw, and can buy one of two types of batteries to power it, namely Duxcell and Infinitycell. Batteries of each type have lifetimes before recharge that can be assumed independent and Normally distributed. The mean and standard deviation of the lifetimes of the Duxcell batteries are 10 and 2 minutes respectively, the mean and standard deviation for the Infinitycell batteries are 19 and 2 minutes respectively.
Part a) What is the probability that a Duxcell battery will last longer than an Infinitycell battery? Give your answer to two decimal places.

Part b) What is the probability that an Infinitycell battery will last more than twice as long as a Duxcell battery? Give your answer to two decimal places.

Part c) You are going to cut down a large tree and do not want to break off from the job to recharge your chainsaw battery. You buy two Duxcell batteries, and plan to use one until it runs out of power, after which you immediately replace it with the second battery. How long (in minutes) can the job last so that with probability 0.75 you can complete the job using the two Duxcell batteries in sequence?

Provide your answer to 1 decimal place.

Homework Equations


[/B]
z=(x-mean)/StdDev

The Attempt at a Solution



Just wanted to verify something quickly, for part b I had to use sqrt(20) as my standard deviation. I got this because I added the standard deviation of each battery:
sqrt(2^2 (for the infinitycell) + 4^2 (for the duxcell))

Meanwhile for part c), the total standard deviation I used was sqrt(2^2 +2^2), since it is 2 for each (duxcell).

My question is, in part b I could simply double the duxcell battery standard deviation, while in c I had to treat each battery standard deviation separately, and first convert to variance before i could add them. Is this due to the difference between double the duration (part b) and two batteries in sequence (part c)?

Thanks

If ##X_d## is the Duxcell lifetime and ##X_i## is the Infinitycell lifetime, in part (b) you want to know ##P(X_i > 2 X_d)##, which is the same as ##P( X_i - 2X_d > 0)##. What can you say about the random variable ##Y = X_i - 2X_d##?
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 8 ·
Replies
8
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
7K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
3
Views
5K