Quick questions regarding BRA KET notation

  • Context: Graduate 
  • Thread starter Thread starter rwooduk
  • Start date Start date
  • Tags Tags
    Bra ket Notation
Click For Summary
SUMMARY

This discussion clarifies the application of BRA KET notation in quantum mechanics, specifically regarding the Kronecker delta function and the Levi-Civita tensor. The correct representation of the Kronecker delta is δ_{ij} = ⟨i|j⟩ only if |i⟩ and |j⟩ are part of an orthonormal set of vectors. Additionally, the Levi-Civita tensor cannot be directly expressed in BRA KET notation, as it represents a numerical function rather than an operator. Misunderstandings about the nature of vectors and operators in quantum mechanics were addressed, emphasizing the distinction between numerical values and vector representations.

PREREQUISITES
  • Understanding of quantum mechanics and vector spaces
  • Familiarity with BRA KET notation and its applications
  • Knowledge of the Kronecker delta function and its properties
  • Basic concepts of linear algebra, particularly inner products
NEXT STEPS
  • Study the properties of orthonormal sets of vectors in Hilbert spaces
  • Learn about the Levi-Civita tensor and its applications in physics
  • Explore the implications of inner products in quantum mechanics
  • Investigate the use of operators in quantum mechanics, particularly in relation to state transformations
USEFUL FOR

Students and professionals in physics, particularly those focusing on quantum mechanics, as well as mathematicians interested in linear algebra and its applications in theoretical physics.

rwooduk
Messages
757
Reaction score
59
I'm trying to apply BRA KET notation to my notes on particle physics.

please could someone confirm that the kroneker delta function may be written

\delta _{ij} = \left \langle i |j \right \rangle

OR would it be written

δij = |i> <j|

I know i and j are indices, so can BRA KET even be used?

Also if you have the Levi-Civita Tensor εijk is it possible to write this in BRA KET form?

In particular take this identity:

\varepsilon _{ijk} \varepsilon _{ilm} = \delta _{jl} \delta _{km} - \delta _{jm} \delta _{kl}

how would this be written in BRA KET, or am I mixing things up? it would be nice if at all possible to use BRA KET in my particle as I found using it very useful in last semesters quantum!

thanks for any ideas / guidance!
 
Physics news on Phys.org
You're mixing things up.
In QM, states are represented by kets, which are vectors in an abstract Hilbert space(a vector space with some properties). So ## |\phi\rangle , |i \rangle , |\uparrow \rangle ,... ## are abstract vectors.
## \langle i | j \rangle ## is the inner product of vectors ## |i \rangle ## and ## |j \rangle ##. Only if they're part of an orthonormal set of vectors, you can write ## \langle i | j \rangle=\delta_{ij} ##, otherwise the inner product can be any complex number. So ## \langle i | j \rangle=\delta_{ij} ## is not a representation of Kronecker delta but only a way of saying that we have a orthonormal set of vectors.
And about ## | i \rangle \langle j | ##. This is an operator, something that gets a vector and gives another vector. But its not what Kronecker delta does its not an operator and so ## \delta_{ij}=| i \rangle \langle j | ## is wrong too!

Not only that these are not representations of Kronecker delta, but also people usually don't use such representations because ## \delta_{ij}=\left\{ \begin{array}{lr} 1 \ \ \ i=j \\ 0 \ \ \ i\neq j \end{array} \right. ## is good enough.
 
Last edited:
  • Like
Likes   Reactions: rwooduk
Shyan said:
You're mixing things up.
In QM, states are represented by kets, which are vectors in an abstract Hilbert space(a vector space with some properties). So ## |\phi\rangle , |i \rangle , |\uparrow \rangle ,... ## are abstract vectors.
## \langle i | j \rangle ## is the inner product of vectors ## |i \rangle ## and ## |j \rangle ##. Only if they're part of an orthonormal set of vectors, you can write ## \langle i | j \rangle=\delta_{ij} ##, otherwise the inner product can be any complex number. So ## \langle i | j \rangle=\delta_{ij} ## is not a representation of Kronecker delta but only a way of saying that we have a orthonormal set of vectors.
Not only that it is not, in general, a representation of Kronecker delta, but also people usually don't use such representations because ## \delta_{ij}=\left\{ \begin{array}{lr} 1 \ \ \ i=j \\ 0 \ \ \ i\neq 0 \end{array} \right. ## is good enough.
And about ## | j \rangle \langle i | ##. This is an operator, something that gets a vector and gives another vector. But its not what Kronecker delta does its not an operator and so ## \delta_{ij}=| j \rangle \langle i | ## is wrong too!

hmm but couldn't you also apply ## | j \rangle \langle i | ## sort of like this:

x_{i} \delta _{ij} y_{i} = \left \langle x|\delta |y \right \rangle

would that be correct?

aside from that, thanks for the reply, was hoping to apply BRA and KET but if it's incorrect then I'll just use standard notation.
 
rwooduk said:
x_i \delta_{ij}y_i=\langle x | \delta | y \rangle
You mean ## \langle x | (| i \rangle \langle j |)| y \rangle=\langle x| i \rangle \langle j | y \rangle=\langle i| x \rangle^* \langle j | y \rangle=x_i^* y_j##?

This is correct only if ## | i \rangle ## and ##| j \rangle## are part of an orthonormal set of vectors. But this has nothing to do with Kronecker delta. Because ## \delta_{ij}=\left\{ \begin{array}{lr} 1 \ \ \ i=j \\ 0 \ \ \ i\neq j \end{array} \right. ## is a number: 0 or 1. Its just a compact way of writing particular conditionals to choose between 0 and 1 but it still means a number! But ## | i \rangle \langle j | ## is an operator.
 
  • Like
Likes   Reactions: rwooduk
Shyan said:
You mean ## \langle x | (| i \rangle \langle j |)| y \rangle=\langle x| i \rangle \langle j | y \rangle=\langle i| x \rangle^* \langle j | y \rangle=x_i^* y_j##?

This is correct only if ## | i \rangle ## and ##| j \rangle## are part of an orthonormal set of vectors. But this has nothing to do with Kronecker delta. Because ## \delta_{ij}=\left\{ \begin{array}{lr} 1 \ \ \ i=j \\ 0 \ \ \ i\neq j \end{array} \right. ## is a number: 0 or 1. Its just a compact way of writing particular conditionals to choose between 0 and 1 but it still means a number! But ## | i \rangle \langle j | ## is an operator.

Yes, that's what I meant, hmm indeed, yes i and j are just numbers not part of an orthonormal set of vectors, ok guess I better start getting used to the upcoming new notation! Thanks very much you have saved me from making errors and a large amount of time!
 
rwooduk said:
i and j are just numbers not part of an orthonormal set of vectors
It seems you misunderstood things. i and j are numbers but ## |i\rangle ## and ## |j\rangle ## are vectors. Now if we can find a set of vectors ## B=\{ | n \rangle \}_{n=1}^\infty ## such that for all pairs of vectors in this set, we have ## \langle k | l \rangle =\delta_{k l} ## and ## |i\rangle \in B ## and ## |j\rangle \in B ## , we can say ## |i\rangle ## and ## |j\rangle ## are part of an orthonormal set of vectors, otherwise they're just vectors.
If conditions above are satisfied, then any other vector ##|x\rangle ## can be written as a linear combination of members of B, i.e. ## |x\rangle=\sum_{n=1}^\infty x_n |n\rangle ## where ## x_n ## are complex numbers. Then we can write ## \langle i |x\rangle=\sum_{n=1}^\infty x_n \langle i|n\rangle=\sum_{n=1}^\infty x_n \delta_{in}=x_i ##.
 
Last edited:
  • Like
Likes   Reactions: rwooduk
Shyan said:
It seems you misunderstood things. i and j are numbers but ## |i\rangle ## and ## |j\rangle ## are vectors. Now if we can find a set of vectors ## B=\{ | n \rangle \}_{n=1}^\infty ## such that for all pairs of vectors in this set, we have ## \langle k | l \rangle =\delta_{k l} ## and ## |i\rangle \in B ## and ## |j\rangle \in B ## , we can say ## |i\rangle ## and ## |j\rangle ## are part of an orthonormal set of vectors, otherwise they're just vectors.
If conditions above are satisfied, then any other vector ##|x\rangle ## can be written as a linear combination of members of B, i.e. ## |x\rangle=\sum_{n=1}^\infty x_n |n\rangle ## where ## x_n ## are complex numbers. Then we can write ## \langle i |x\rangle=\sum_{n=1}^\infty x_n \langle i|n\rangle=\sum_{n=1}^\infty x_n \delta_{in}=x_i ##.
thanks, yes i misunderstood, that's much clearer! thanks again.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
7
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 17 ·
Replies
17
Views
3K