MHB Quit Ratio - Function Question

  • Thread starter Thread starter cgr4
  • Start date Start date
  • Tags Tags
    Function Ratio
cgr4
Messages
7
Reaction score
0
So here's the question.

In industry, the relationship between wages and the quit ratio of employees is defined to be the percentage of employees that quit within 1 year of employment. The quit ratio of a large restaurant chain that pays its employees the minimum wage \$6.55 per hour was .2 or 20 employees per 100. When the company raised the hourly wage to \$8, the quit ratio dropped to .18, or 18 employees per 100.

a) Assuming a linear relationship between the quit ratio Q(x) and the hourly wage x, find an expression for Q(x).

b) What should the hourly wage be for the quit ratio to drop to 10 employees per 100?

So for A.

y2-y1 / x2-1

Step 1, find the slope?

.18 minus .20 divided by 8 minus 6.55

So the slope would be -.02 / 1.45
 
Mathematics news on Phys.org
a) $Q$ is the dependent variable and $x$ is the independent variable, and so the slope $m$ of the linear function would be given by:

$$m=\frac{\Delta Q}{\Delta x}=-\frac{2}{145}$$

This agrees with your result, I have just written it as the ratio of one integer to another, as is more traditional for rational numbers.

So, you have the slope, and you have two points to choose from to use in the point-slope formula. What does this give you?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top