Quotient Modules and Homomorphisms

Click For Summary
SUMMARY

The forum discussion focuses on Theorem 1.15 from "Introduction to Ring Theory" by P. M. Cohn, which addresses module homomorphisms and quotient modules. The participants clarify the proof regarding the well-defined action of a ring \( R \) on cosets of a module \( M \) with respect to a submodule \( M' \). Specifically, they confirm that if \( x + M' = y + M' \), then the action \( (x + M')r = (y + M')r \) holds true, demonstrating that the scalar multiplication respects the partition induced by the cosets. This discussion emphasizes the importance of understanding the properties of modules and their homomorphisms in abstract algebra.

PREREQUISITES
  • Understanding of module theory and homomorphisms
  • Familiarity with quotient modules and their properties
  • Basic knowledge of ring theory, particularly scalar multiplication
  • Experience with mathematical proofs in abstract algebra
NEXT STEPS
  • Study the properties of quotient modules in detail
  • Learn about module homomorphisms and their applications
  • Explore examples of scalar multiplication in various modules
  • Investigate the implications of Theorem 1.15 in different algebraic structures
USEFUL FOR

Mathematics students, particularly those studying abstract algebra, educators teaching module theory, and researchers exploring the properties of rings and modules.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)

In Chapter 1: Basics we find Theorem 1.15 on module homomorphisms and quotient modules. I need help with some aspects of the proof.

Theorem 1.15 reads as follows:

View attachment 3247

In the proof of the converse (see above text) Cohn states the following:

"If $$x$$ is replaced by $$x + m$$ where $$m \in M'$$,

then $$x + m + M' = x + M'$$ and $$mr \in M'$$,

hence $$(x + m)r + M' = xr + mr + M' = xr +M'$$,

therefore the action of $$R$$ on the cosets is well defined … … "

I am uncertain about what is going on here … … can someone please explain to me why/how the above text does indeed show that the action of $$R$$ on the cosets is well defined?

Help will be appreciated.

Peter

***EDIT*** (SOLVED?)

I think I should have reflected longer on this matter!

Now we take an element $$x \in M$$ and $$r \in R$$ and define the right action $$(x + M')r = xr + m$$.

I now think that we have to show that if we take another element from the coset $$x + M'$$ - say $$x + m$$ where $$m \in M'$$, that the effect of the action is the same - and this is what Cohn is doing ...

Can someone please confirm that this is correct?
 
Last edited:
Physics news on Phys.org
Peter said:
I am reading "Introduction to Ring Theory" by P. M. Cohn (Springer Undergraduate Mathematics Series)

In Chapter 1: Basics we find Theorem 1.15 on module homomorphisms and quotient modules. I need help with some aspects of the proof.

Theorem 1.15 reads as follows:

View attachment 3247

In the proof of the converse (see above text) Cohn states the following:

"If $$x$$ is replaced by $$x + m$$ where $$m \in M'$$,

then $$x + m + M' = x + M'$$ and $$mr \in M'$$,

hence $$(x + m)r + M' = xr + mr + M' = xr +M'$$,

therefore the action of $$R$$ on the cosets is well defined … … "

I am uncertain about what is going on here … … can someone please explain to me why/how the above text does indeed show that the action of $$R$$ on the cosets is well defined?

Help will be appreciated.

Peter

***EDIT*** (SOLVED?)

I think I should have reflected longer on this matter!

Now we take an element $$x \in M$$ and $$r \in R$$ and define the right action $$(x + M')r = xr + m$$.

I now think that we have to show that if we take another element from the coset $$x + M'$$ - say $$x + m$$ where $$m \in M'$$, that the effect of the action is the same - and this is what Cohn is doing ...

Can someone please confirm that this is correct?

To show that the action is well defined, we have to show that $x + M' = y + M'$ implies $(x + M')r = (y + M')r$. What Cohn did is equivalent to this, but follow what I'm doing here. If $x + M' = y + M'$, then $x - y \in M'$ and thus $x = y + m$ for some $m\in M'$. By right-distributivity of scalar multiplication in $M'$ over addition, $xr = (y + m)r = yr + mr$. Since $mr \in M'$, we have $xr + M' = yr + M'$, i.e., $(x + M')r = (y + M')r$.
 
Euge said:
To show that the action is well defined, we have to show that $x + M' = y + M'$ implies $(x + M')r = (y + M')r$. What Cohn did is equivalent to this, but follow what I'm doing here. If $x + M' = y + M'$, then $x - y \in M'$ and thus $x = y + m$ for some $m\in M'$. By right-distributivity of scalar multiplication in $M'$ over addition, $xr = (y + m)r = yr + mr$. Since $mr \in M'$, we have $xr + M' = yr + M'$, i.e., $(x + M')r = (y + M')r$.
Thanks for clarifying that Euge … still reflecting on what you have said ...

Peter
 
Here's the thing:

we can "define":

$(x + M')r = xr + M'$

but this definition uses $x$ (an element of $M'$), and $x$ does not uniquely determine $x + M'$; for example, if $y = x + m'$, with $m' \in M'$, then $y + M' = (x + m') + M' = (x + M') + (m' + M') = (x + M') + (0 + M') = x + M'$.

So we need to be sure that the assignment:

$x + M' \mapsto xr + M'$ is a function that only depends on $x + M'$, and not on $x$.

And what THAT means is, that if we have $y \neq x$ with $y + M' = x + M'$, we must get the same value $xr + M'$ no matter which $y$ we pick.

In other words, we must show: $x + M' = y + M' \implies xr + M' = yr + M'$.

Now $x + M' = y + M'$ if and only if $x - y \in M'$. From this, we must deduce that $xr - yr \in M'$.

BECAUSE $M$' IS A SUBMODULE, it is closed under the right $R$-action.

This means that $(x - y)r$ is in $M'$ since $x - y$ is.

Since $M$ is a module, we have $(x - y)r = xr - yr$, and thus we have shown what we set out to.

******************************

This is an example of a quite general phenomenon:

For any SET $A$, and any FUNCTION $f:A \to B$, and any PARTITION of $A$, say $E$, we can form the set of partition subsets $A/E$.

We say $f$ RESPECTS $E$ if and only if we have a function $[f]: A/E \to B$ such that $[f][a]_E = f(a)$ for all $a \in A$.

(Here, $[a]_E$ is the element of the partition $E$ that contains $a$. Since $E$ is a partition, each $a \in A$ occurs in precisely one such partition element).

In other words: $f$ is constant on each element of the partition.

One way to partition $A$ that always works is to set $[a] = f^{-1}(a)$. This is called the partition induced by $f$, which automatically respects this partition.

So, what Cohn is saying is that scalar multiplication (by any $r \in R$) respects the partition of $M$ induced by the mapping:

$x \mapsto x + M'$

As a bonus, we get that this mapping is an $R$-module homomorphism, which is kind of the whole point.

*******************

Recall that as $\Bbb Z$-modules we have $\Bbb Z_6 \cong \Bbb Z_2 \oplus \Bbb Z_3$.

Now we have (fairly obviously):

$\Bbb Z_3 \cong (\Bbb Z_2 \oplus \Bbb Z_3)/(\Bbb Z_2 \oplus \{[0]_3\})$

Since this is finite, rather than invoking the Chinese Remainder theorem to find the "inverse isomorphism", let's just compute the "forward" one using:

$[k]_6 \mapsto ([k]_2,[k]_3)$

So:

$0 \mapsto (0,0)$ (I will omit the brackets and subscripts from here on).
$1\mapsto (1,1)$
$2 \mapsto (0,2)$
$3 \mapsto (1,0)$
$4 \mapsto (0,1)$
$5 \mapsto (1,2)$

If we call this mapping $\phi: \Bbb Z_6 \to \Bbb Z_2 \oplus \Bbb Z_3$, let's examine:

$\phi^{-1}(\Bbb Z_2 \oplus \{0\}) = \langle 3\rangle$.

So $\Bbb Z_6$ will be our "$M$", and $\langle 3\rangle$ will be our "$M'$".

In $M$ we define the $\Bbb Z$-action by:

$[k]_6 \cdot a = [ka]_6$.

In $M/M'$, we define: $([k]_6 + M')\cdot a = [ka]_6 + M'$. Let's look at this explicitly.

We have three cosets:

$0 + M' = \{0,3\}$
$1 + M' = \{1,4\}$
$2 + M' = \{2,5\}$

What we want to do is verify that for a coset $N$, that $Na$ (multiplying every element in $\Bbb Z_6$ that lies in $N$ by $a$) gives the same set as just multiplying a representative (say $k$) by $a$ and then adding $M'$. Let's do this for $k = 2$, and $a = 9$.

Now $2 + M' = \{2,5\}$ so $(2 + M')\cdot 9 = \{18,45\} = \{0,3\} = M'$ (since we are working mod 6).

On the other hand: $2 \cdot 9 = 18 = 0$, so we would expect that $(2 + M')\cdot 9 = 0 + M' = M'$.

Of course, we get the same multiples for $a+6$ as we do for $a$, so we can just compute explictly the action of $M/M'$ by looking at the action of $\Bbb Z_6$ on $M$:

$(k + M')0 = M'$
$(k + M')1 = k + M'$
$(k + M')2 = 2k + M'$ etc.

It is not hard to see that if $a$ is a multiple of $3$, we get $M'$, so we really only need to look at $a = 0,1,2$.

This, of course should NOT be surprising, after all, our quotient module is congruent to $\Bbb Z/3\Bbb Z$.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 3 ·
Replies
3
Views
960
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 23 ·
Replies
23
Views
4K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 26 ·
Replies
26
Views
932
  • · Replies 13 ·
Replies
13
Views
1K