MHB R - Richardson Extrapolation for Accurate Estimates

  • Thread starter Thread starter blackthunder
  • Start date Start date
  • Tags Tags
    Extrapolation
Click For Summary
To achieve a more accurate estimate of L using Richardson extrapolation, the formula \(R_L=\frac{2^{1/2}\phi(h/2)-\phi(h)}{2^{1/2}-1}\) can be applied. This approach utilizes the values of \(\phi(h)\) and \(\phi(h/2)\) to minimize error terms associated with the unknown coefficients \(c_i\). The extrapolation effectively reduces the leading error term, enhancing the precision of the estimate. The discussion emphasizes the importance of selecting the right combination of these values for improved accuracy. Overall, applying Richardson extrapolation is a key strategy for refining estimates in numerical analysis.
blackthunder
Messages
3
Reaction score
0
Hey, I was hoping someone could help me with this question I can't get at all.

If $$\phi{h}=L-c_1h^{\frac{1}{2}}-c_2h^{\frac{2}{2}}-c_3h^{\frac{3}{2}}-...$$ , then what combination of $$\phi{h}$$ and $$\phi(\frac{h}{2})$$ should give a more accurate estimate of L.

Thanks for any help.
 
Mathematics news on Phys.org
blackthunder said:
Hey, I was hoping someone could help me with this question I can't get at all.

If $$\phi{h}=L-c_1h^{\frac{1}{2}}-c_2h^{\frac{2}{2}}-c_3h^{\frac{3}{2}}-...$$ , then what combination of $$\phi{h}$$ and $$\phi(\frac{h}{2})$$ should give a more accurate estimate of L.

Thanks for any help.

Assuming that the \(c_i\)s are unknown we can write:

\[\phi( h)=L-c_1h^{1/2}+O( h)\]

and \(n=1/2\) in the Richardson extrapolation formula and so the Richardson extrapolation for \(L\) is:

\[R_L=\frac{2^{1/2}\phi(h/2)-\phi( h)}{2^{1/2}-1}\]

CB
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
7K
  • · Replies 4 ·
Replies
4
Views
2K