MHB Radial distribution of a 3d orbital

Dethrone
Messages
716
Reaction score
0
How do I sketch the radial distribution of a $3d_{x^2-y^2}$ orbital? :D
 
Mathematics news on Phys.org
Rido12 said:
How do I sketch the radial distribution of a $3d_{x^2-y^2}$ orbital? :D

Hey Rido!

Check out for instance Atomic orbitals on wiki?
It has some nice and different types of representations for the $3d_{x^2-y^2}$ orbital. (Mmm)
 
Thanks ILS and jacobi! (Cool)

I was able to find this image, which I'm pretty sure is the radial distribution of the 3D orbital.

View attachment 3854

In general, an orbital has $n-l-1$ radial nodes, and in this case, $n=3$, $l=2$, so there are $0$ radial nodes. This agrees with the image because there are no roots on the graph. There are however, two angular nodes / nodal planes that are perpendicular to the axis, but does not need to be reflected in the graph.
 

Attachments

  • Plot Radial Distribution.PNG
    Plot Radial Distribution.PNG
    7.5 KB · Views: 102
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top