MHB Radial distribution of a 3d orbital

AI Thread Summary
To sketch the radial distribution of a 3d orbital, specifically the $3d_{x^2-y^2}$ orbital, resources like Wikipedia's Atomic Orbitals and The Orbitron provide valuable visual representations and explanations. The $3d_{x^2-y^2}$ orbital has no radial nodes, as indicated by the formula $n-l-1$, where $n=3$ and $l=2$. The graph of the radial distribution confirms this, showing no roots. Additionally, there are two angular nodes that are perpendicular to the axis, which do not need to be depicted in the radial distribution graph. Understanding these characteristics is essential for accurately sketching the orbital's distribution.
Dethrone
Messages
716
Reaction score
0
How do I sketch the radial distribution of a $3d_{x^2-y^2}$ orbital? :D
 
Mathematics news on Phys.org
Rido12 said:
How do I sketch the radial distribution of a $3d_{x^2-y^2}$ orbital? :D

Hey Rido!

Check out for instance Atomic orbitals on wiki?
It has some nice and different types of representations for the $3d_{x^2-y^2}$ orbital. (Mmm)
 
Thanks ILS and jacobi! (Cool)

I was able to find this image, which I'm pretty sure is the radial distribution of the 3D orbital.

View attachment 3854

In general, an orbital has $n-l-1$ radial nodes, and in this case, $n=3$, $l=2$, so there are $0$ radial nodes. This agrees with the image because there are no roots on the graph. There are however, two angular nodes / nodal planes that are perpendicular to the axis, but does not need to be reflected in the graph.
 

Attachments

  • Plot Radial Distribution.PNG
    Plot Radial Distribution.PNG
    7.5 KB · Views: 104
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top