MHB Radical Equation Without Constant

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Constant Radical
mathdad
Messages
1,280
Reaction score
0
Solve for all real number t values.

sqrt {2t + 5} - sqrt {8t + 25} + sqrt {2t + 8} = 0

I see there are no constants in this problem. I typically isolate the radical on one side of the equation and the constant (s) on the other side but there are 3 radicals on the left side. This is strange.

Can someone get me started?
 
Mathematics news on Phys.org
Rewrite as $\sqrt{2t+5}+\sqrt{2t+8}=\sqrt{8t+25}$. What do you get when you square both sides?
 
greg1313 said:
Rewrite as $\sqrt{2t+5}+\sqrt{2t+8}=\sqrt{8t+25}$. What do you get when you square both sides?

I had no idea that it is legal to move one radical over to the other side. When I square both sides, the radicals go away.
 
RTCNTC said:
I had no idea that it is legal to move one radical over to the other side. When I square both sides, the radicals go away.
At a guess you are forgetting about the cross term. [math](a + b)^2 \neq a^2 + b^2[/math]. It is [math](a + b)^2 = a^2 + 2ab + b^2[/math]. You are going to end up having to apply getting rid of the radicals two times. For each one you pick a term and put it on the RHS. Then square it.

-Dan
 
Very good. I will work on this later.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top