Radius of Convergence: Evaluate & Ignoring Extra Vars

Click For Summary
SUMMARY

The radius of convergence for the power series defined by \( f(x) = \sum_{k=0}^\infty \frac{k x^k}{3^k} \) is determined using the ratio test. The limit \( L = \frac{(k+1)x}{3k} \) must not depend on \( k \) or \( x \) for the radius \( R \) to be valid. The correct formula for the radius of convergence is given by \( R = \frac{1}{\lim\sup_{k \to \infty} \sqrt[k]{|a_k|}} \), where \( a_k = \frac{k}{3^k} \). Thus, the radius of convergence is independent of the variable \( x \) and solely relies on the coefficients of the series.

PREREQUISITES
  • Understanding of power series and their convergence properties
  • Familiarity with the ratio test for convergence
  • Knowledge of limits and limit superior in calculus
  • Basic algebraic manipulation of series and sequences
NEXT STEPS
  • Study the application of the ratio test in detail for various series
  • Explore the root test and its comparison with the ratio test
  • Learn about the concept of limit superior in sequences
  • Investigate other methods for determining the radius of convergence, such as the root test
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in understanding series convergence and power series analysis.

brunette15
Messages
58
Reaction score
0
I am attempting to evaluate the radius of convergence for a series that goes from k=0 to infinity. The series is given by (k*x^k)/(3^k).

I have begun by using the ratio test and have gotten to the point L = (k+1)*x/3k

Now i know i can find out the radius of convergence by simply saying R = 1/L.

However, i am always unsure what to do with the extra x and k variables that i still have in L. Can they just be ignored?
 
Physics news on Phys.org
Remember that your series has $x$ as an argument, i.e. it's more a function $f$ like:
$$f(x) = \sum_{k = 0}^\infty \frac{k x^k}{3^k}$$
and the radius of convergence $R$ simply means that the series converges for all arguments $x$ such that $\lvert x \rvert < R$. So it should be clear that the radius of convergence can't depend on $k$ (which is just a dummy variable used for the sum) or $x$.

Remember that you are dealing with a power series here, which is more clearly expressed as a sum of coefficients and powers:
$$f(x) = \sum_{k = 0}^\infty \frac{k}{3^k} x^k$$
Here the power is the $x^k$ term (and is the ONLY place $x$ can appear) and the coefficient is $k / 3^k$, which must be independent of $x$. The radius of convergence of the series depends only on the coefficients, not on the $x^k$ term (which is there for all power series anyway) so the radius of convergence can't depend on $x$. Finally, the radius of convergence is defined as a limit process as $k \to \infty$, given by:
$$R = \frac{1}{\lim\sup_{k \to \infty} \sqrt[k]{\lvert a_k \rvert}}$$
where $a_k$ is the $k$th coefficient of your power series, that is, $k / 3^k$ (again, independent of $x$). So your $L$ (the limit in the denominator) is wrong, since it can't depend on $k$. Hope that helps.
 
Last edited:
Bacterius said:
Remember that your series has $x$ as an argument, i.e. it's more a function $f$ like:
$$f(x) = \sum_{k = 0}^\infty \frac{k x^k}{3^k}$$
and the radius of convergence $R$ simply means that the series converges for all arguments $x$ such that $\lvert x \rvert \leq R$. So it should be clear that the radius of convergence can't depend on $k$ (which is just a dummy variable used for the sum) or $x$.

Remember that you are dealing with a power series here, which is more clearly expressed as a sum of coefficients and powers:
$$f(x) = \sum_{k = 0}^\infty \frac{k}{3^k} x^k$$
Here the power is the $x^k$ term (and is the ONLY place $x$ can appear) and the coefficient is $k / 3^k$, which must be independent of $x$. The radius of convergence of the series depends only on the coefficients, not on the $x^k$ term (which is there for all power series anyway) so the radius of convergence can't depend on $x$. Finally, the radius of convergence is defined as a limit process as $k \to \infty$, given by:
$$R = \frac{1}{\lim\sup_{k \to \infty} \sqrt[k]{\lvert a_k \rvert}}$$
where $a_k$ is the $k$th coefficient of your power series, that is, $k / 3^k$ (again, independent of $x$). So your $L$ (the limit in the denominator) is wrong, since it can't depend on $k$. Hope that helps.

That makes a lot more sense! Thankyou!
 
Usually radii of convergence are found with the ratio test, rather than the root test. To evaluate the radius of convergence, you need to solve for x where $\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| < 1 \end{align*}$.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K