MHB Radius of Convergence: Evaluate & Ignoring Extra Vars

Click For Summary
The discussion focuses on evaluating the radius of convergence for the series (k*x^k)/(3^k) using the ratio test. The key point is that the radius of convergence, R, is determined by the coefficients of the series, specifically k/3^k, and does not depend on the variable x or the dummy variable k. The correct approach is to express the series as a power series and apply the limit process for the coefficients, ensuring that the limit does not involve k or x. The ratio test is highlighted as a common method for finding the radius of convergence, emphasizing the importance of solving for x in the limit condition. Understanding these concepts clarifies the evaluation of the radius of convergence.
brunette15
Messages
58
Reaction score
0
I am attempting to evaluate the radius of convergence for a series that goes from k=0 to infinity. The series is given by (k*x^k)/(3^k).

I have begun by using the ratio test and have gotten to the point L = (k+1)*x/3k

Now i know i can find out the radius of convergence by simply saying R = 1/L.

However, i am always unsure what to do with the extra x and k variables that i still have in L. Can they just be ignored?
 
Physics news on Phys.org
Remember that your series has $x$ as an argument, i.e. it's more a function $f$ like:
$$f(x) = \sum_{k = 0}^\infty \frac{k x^k}{3^k}$$
and the radius of convergence $R$ simply means that the series converges for all arguments $x$ such that $\lvert x \rvert < R$. So it should be clear that the radius of convergence can't depend on $k$ (which is just a dummy variable used for the sum) or $x$.

Remember that you are dealing with a power series here, which is more clearly expressed as a sum of coefficients and powers:
$$f(x) = \sum_{k = 0}^\infty \frac{k}{3^k} x^k$$
Here the power is the $x^k$ term (and is the ONLY place $x$ can appear) and the coefficient is $k / 3^k$, which must be independent of $x$. The radius of convergence of the series depends only on the coefficients, not on the $x^k$ term (which is there for all power series anyway) so the radius of convergence can't depend on $x$. Finally, the radius of convergence is defined as a limit process as $k \to \infty$, given by:
$$R = \frac{1}{\lim\sup_{k \to \infty} \sqrt[k]{\lvert a_k \rvert}}$$
where $a_k$ is the $k$th coefficient of your power series, that is, $k / 3^k$ (again, independent of $x$). So your $L$ (the limit in the denominator) is wrong, since it can't depend on $k$. Hope that helps.
 
Last edited:
Bacterius said:
Remember that your series has $x$ as an argument, i.e. it's more a function $f$ like:
$$f(x) = \sum_{k = 0}^\infty \frac{k x^k}{3^k}$$
and the radius of convergence $R$ simply means that the series converges for all arguments $x$ such that $\lvert x \rvert \leq R$. So it should be clear that the radius of convergence can't depend on $k$ (which is just a dummy variable used for the sum) or $x$.

Remember that you are dealing with a power series here, which is more clearly expressed as a sum of coefficients and powers:
$$f(x) = \sum_{k = 0}^\infty \frac{k}{3^k} x^k$$
Here the power is the $x^k$ term (and is the ONLY place $x$ can appear) and the coefficient is $k / 3^k$, which must be independent of $x$. The radius of convergence of the series depends only on the coefficients, not on the $x^k$ term (which is there for all power series anyway) so the radius of convergence can't depend on $x$. Finally, the radius of convergence is defined as a limit process as $k \to \infty$, given by:
$$R = \frac{1}{\lim\sup_{k \to \infty} \sqrt[k]{\lvert a_k \rvert}}$$
where $a_k$ is the $k$th coefficient of your power series, that is, $k / 3^k$ (again, independent of $x$). So your $L$ (the limit in the denominator) is wrong, since it can't depend on $k$. Hope that helps.

That makes a lot more sense! Thankyou!
 
Usually radii of convergence are found with the ratio test, rather than the root test. To evaluate the radius of convergence, you need to solve for x where $\displaystyle \begin{align*} \lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| < 1 \end{align*}$.
 
There are probably loads of proofs of this online, but I do not want to cheat. Here is my attempt: Convexity says that $$f(\lambda a + (1-\lambda)b) \leq \lambda f(a) + (1-\lambda) f(b)$$ $$f(b + \lambda(a-b)) \leq f(b) + \lambda (f(a) - f(b))$$ We know from the intermediate value theorem that there exists a ##c \in (b,a)## such that $$\frac{f(a) - f(b)}{a-b} = f'(c).$$ Hence $$f(b + \lambda(a-b)) \leq f(b) + \lambda (a - b) f'(c))$$ $$\frac{f(b + \lambda(a-b)) - f(b)}{\lambda(a-b)}...

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 11 ·
Replies
11
Views
5K