MHB Random Variables: Proving Same Probability Distribution & Finding $X+Y$

AI Thread Summary
The discussion focuses on proving that the random variables X, Y, and Z have the same probability distribution, with each having probabilities of 1/3 for their respective values. Participants clarify that despite the different values taken by these variables, they all yield the same probability distribution. The conversation then shifts to finding the probability distribution of the sum X+Y, highlighting that while X and Y share the same distribution, the sum produces a different distribution. Ultimately, the key takeaway is that the individual distributions do not dictate the distribution of their sum, which can yield surprising results.
Julio1
Messages
66
Reaction score
0
Let $\Omega=\{\omega_1,\omega_2,\omega_3\}$ an sample space, $P(\omega_1)=P(\omega_2)=P(\omega_3)=\dfrac{1}{3},$ and define $X,Y$ and $Z$ random variables, such that

$X(\omega_1)=1, X(\omega_2)=2, X(\omega_3)=3$

$Y(\omega_1)=2, Y(\omega_2)=3, Y(\omega_3)=1$

$Z(\omega_1)=3, Z(\omega_2)=1, Z(\omega_3)=2.$

Show that these three random variables have the same probability distribution. Find the probability distribution of $X+Y.$

Hi !, my name is Julio. I'm from Chile, my english isn't good, sorry, but try to do the best I can. Some indication for the problem?, thanks!
 
Mathematics news on Phys.org
Julio said:
Let $\Omega=\{\omega_1,\omega_2,\omega_3\}$ an sample space, $P(\omega_1)=P(\omega_2)=P(\omega_3)=\dfrac{1}{3},$ and define $X,Y$ and $Z$ random variables, such that

$X(\omega_1)=1, X(\omega_2)=2, X(\omega_3)=3$

$Y(\omega_1)=2, Y(\omega_2)=3, Y(\omega_3)=1$

$Z(\omega_1)=3, Z(\omega_2)=1, Z(\omega_3)=2.$

Show that these three random variables have the same probability distribution. Find the probability distribution of $X+Y.$

Hi !, my name is Julio. I'm from Chile, my english isn't good, sorry, but try to do the best I can. Some indication for the problem?, thanks!

Hi Julio! Welcome to MHB! :)

Hint: What is the probability distribution of X?
That is, what is the probability that X=1, X=2, respectively X=3?
 
Thanks I Like Sirena.

The probability distribution of an random variable $X$ is $P(X=x)=p(x)$ if $X$ is discrete, and $P(X=x)=f(x)$ if $X$ is continuous.

But really don't understand how solve the problem, help me please ! :confused:
 
Julio said:
Thanks I Like Sirena.

The probability distribution of an random variable is $P(X=x)=p(x)$ if $X$ is discrete, and $P(X=x)=f(x)$ if $X$ is continuous.

But really don't understand how solve the problem, help me please ! :confused:

So the question is what is $P(X=1)$?
Since $P(\omega_1)=\frac 1 3$ and $X(\omega_1)=1$, it follows that $P(X=1) = \frac 1 3$.
Similarly $P(X=2)=P(X=3)=\frac 1 3$.

How about Y? Does it have the same distribution?
 
OK, thanks!

The query is how know that $\omega_1=1$?, I don't is notation used.
 
Last edited:
Julio said:
OK, thanks!

The query is how know that $\omega_1=1$?, I don't is notation used.

You don't.
What you do know, is that $\omega_1$ is a possible outcome with probability $1/3$.
And furthermore, if the outcome is $\omega_1$, that $X = 1$.
 
Thanks, then

$P(Y=1)=P(Y=2)=P(Y=3)=P(\omega_n)=\dfrac{1}{3}.$

Truth?

Then, the random variables have the same probability distribution because all are equal $\dfrac{1}{3}$?
 
Julio said:
Thanks, then

$P(Y=1)=P(Y=2)=P(Y=3)=P(\omega_n)=\dfrac{1}{3}.$

Truth?

Then, the random variables have the same probability distribution because all are equal $\dfrac{1}{3}$?

Yep! ;)
 
One question, what I find strange is that these random variables take these different values​​, and in the end, your probabilities give the same result. :confused:
 
  • #10
Julio said:
One question, what I find strange is that these random variables take these different values​​, and in the end, your probabilities give the same result. :confused:

Ah. But we still have the second part of the question, which sort of addresses that.
 
  • #11
I like Serena said:
Ah. But we still have the second part of the question, which sort of addresses that.

Oh truth !, I had forgotten. Good, I think that is only add. Namely,

$X(\omega_1)+X(\omega_2)+X(\omega_3)=1+2+3=6,$

$Y(\omega_1)+Y(\omega_2)+Y(\omega_3)=2+3+1=6.$

Thus, $(X+Y)(\omega_n)=6+6=12.$

Okay?
 
  • #12
Julio said:
Oh truth !, I had forgotten. Good, I think that is only add. Namely,

$X(\omega_1)+X(\omega_2)+X(\omega_3)=1+2+3=6,$

$Y(\omega_1)+Y(\omega_2)+Y(\omega_3)=2+3+1=6.$

Thus, $(X+Y)(\omega_n)=6+6=12.$

Okay?

I'm afraid not.
The first possible outcome is $\omega_1$ with probability $\frac 1 3$.
With $X(\omega_1)=1$ and $Y(\omega_1)=2$, that means that $X+Y=1+2=3$.
So $P(X+Y=3) = \frac 1 3$.

The interesting part is that even though X and Y have the same probability distribution, we get to be surprised by the probability distribution of the sum X+Y.
 

Similar threads

Replies
2
Views
2K
Replies
1
Views
2K
Replies
1
Views
2K
Replies
5
Views
2K
Replies
30
Views
4K
Back
Top