leprofece said:
Oh it doesn't like my teacher he says I need to prove it in a math way unless it is a theoretical matter
$$f(x)=x+\frac{1}{x^2}$$
The domain of $f$ is $(-\infty,0) \cup (0,+\infty)$
$$f'(x)=1-\frac{2x}{x^4}=1-\frac{2}{x^3}=\frac{x^3-2}{x^3}$$
$$f'(x)=0 \Rightarrow x^3=2 \Rightarrow x=\sqrt[3]{2}$$
We can see that $f'(x)>0$ for $x>\sqrt[3]{2}$ and for $x<0$ and $f'(x)<0$ for $0<x<\sqrt[3]{2}$
Therefore, $f$ is increasing at $(-\infty,0)$, decreasing at $(0, \sqrt[3]{2} ]$ and increasing at $[\sqrt[3]{2},+\infty)$
$$R_1=(\lim_{x \to -\infty} f(x), \lim_{x \to 0} f(x))=(-\infty,+\infty)$$
$$R_2= [ f(\sqrt[3]{2}), \lim_{x \to 0} f(x))=[ \frac{3}{2^{\frac{2}{3}}},+\infty)$$
$$R_3=[ f(\sqrt[3]{2}), \lim_{x \to +\infty} f(x))=[ \frac{3}{2^{\frac{2}{3}}}, +\infty)$$
The range of $f$ is:
$$R=R_1 \cup R_1 \cup R_3=(-\infty,+\infty)$$