MHB Rate of Change of Plane's Distance from Radar Station - Gina's Question

MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

related rates; Find the rate at which the distance from the plane to the station is increasing when it is..?


A plane flying horizontally at an altitude of 1 mi and a speed of 470 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station. (Round your answer to the nearest whole number.)
__ mi/h

thanks will vote best answer!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Gina,

First, let's draw a diagram:

View attachment 1445

The plane is at $P$, the radar station is at $R$, $h$ is the altitude of the plane (which is constant since its flight is said to be horizontal) and $x$ is the distance from the radar station to the point on the ground (or at the same level as the radar station) directly below the plane. $s$ is the distance from the plane the the radar station.

Using the Pythagorean theorem, we may state:

(1) $$x^2+h^2=s^2$$

Implicitly differentiating (1) with respect to time $t$, we find:

$$2x\frac{dx}{dt}=2s\frac{ds}{dt}$$

We are interested in solving for $$\frac{ds}{dt}$$ since we are asked to find the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station. So, we find:

$$\frac{ds}{dt}=\frac{x}{s}\frac{dx}{dt}$$

Now, we do not know $x$ but we know $h$ and $s$, and so solving (1) for $x$ (and taking the positive root since it represents a distance), we find:

$$x=\sqrt{s^2-h^2}$$

And so we have:

$$\frac{ds}{dt}=\frac{\sqrt{s^2-h^2}}{s}\frac{dx}{dt}$$

Now, the speed $v$ of the plane represents the time rate of change of $x$, hence:

$$v=\frac{dx}{dt}$$

and so we may write:

$$\frac{ds}{dt}=\frac{v\sqrt{s^2-h^2}}{s}$$

Now, we may plug in the given data:

$$v=470\frac{\text{mi}}{\text{hr}},\,s=5\text{ mi},\,h=1\text{ mi}$$

and we then find:

$$\frac{ds}{dt}=\frac{470\sqrt{5^2-1^2}}{5} \frac{\text{mi}}{\text{hr}}=188\sqrt{6}\frac{\text{mi}}{\text{hr}}\approx460.504071643238 \text{ mph}$$

And so we have found that the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station is about 461 mph.
 

Attachments

  • gina.jpg
    gina.jpg
    4.2 KB · Views: 93
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top