MHB Rate of Change of Plane's Distance from Radar Station - Gina's Question

AI Thread Summary
The discussion focuses on calculating the rate at which the distance from a plane to a radar station is increasing when the plane is 5 miles away. The plane flies at an altitude of 1 mile and a speed of 470 miles per hour. Using the Pythagorean theorem and implicit differentiation, the formula for the rate of change of distance is derived. Substituting the known values into the equation yields a result of approximately 461 miles per hour. This calculation provides the desired rate of change for the scenario presented.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

related rates; Find the rate at which the distance from the plane to the station is increasing when it is..?


A plane flying horizontally at an altitude of 1 mi and a speed of 470 mi/h passes directly over a radar station. Find the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station. (Round your answer to the nearest whole number.)
__ mi/h

thanks will vote best answer!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Gina,

First, let's draw a diagram:

View attachment 1445

The plane is at $P$, the radar station is at $R$, $h$ is the altitude of the plane (which is constant since its flight is said to be horizontal) and $x$ is the distance from the radar station to the point on the ground (or at the same level as the radar station) directly below the plane. $s$ is the distance from the plane the the radar station.

Using the Pythagorean theorem, we may state:

(1) $$x^2+h^2=s^2$$

Implicitly differentiating (1) with respect to time $t$, we find:

$$2x\frac{dx}{dt}=2s\frac{ds}{dt}$$

We are interested in solving for $$\frac{ds}{dt}$$ since we are asked to find the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station. So, we find:

$$\frac{ds}{dt}=\frac{x}{s}\frac{dx}{dt}$$

Now, we do not know $x$ but we know $h$ and $s$, and so solving (1) for $x$ (and taking the positive root since it represents a distance), we find:

$$x=\sqrt{s^2-h^2}$$

And so we have:

$$\frac{ds}{dt}=\frac{\sqrt{s^2-h^2}}{s}\frac{dx}{dt}$$

Now, the speed $v$ of the plane represents the time rate of change of $x$, hence:

$$v=\frac{dx}{dt}$$

and so we may write:

$$\frac{ds}{dt}=\frac{v\sqrt{s^2-h^2}}{s}$$

Now, we may plug in the given data:

$$v=470\frac{\text{mi}}{\text{hr}},\,s=5\text{ mi},\,h=1\text{ mi}$$

and we then find:

$$\frac{ds}{dt}=\frac{470\sqrt{5^2-1^2}}{5} \frac{\text{mi}}{\text{hr}}=188\sqrt{6}\frac{\text{mi}}{\text{hr}}\approx460.504071643238 \text{ mph}$$

And so we have found that the rate at which the distance from the plane to the station is increasing when it is 5 mi away from the station is about 461 mph.
 

Attachments

  • gina.jpg
    gina.jpg
    4.2 KB · Views: 98
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top