Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Rate of convergence and asymptotic error constant

  1. Jan 8, 2009 #1
    In the context of root finding algorithms such as secant, regula falsi, bisection, Newton's method:


    \lim_{n \to \infty} \frac{|x*-x_{n+1}|}{|x*-x_{n}|^{p}} = C


    I understand the meaning of the order p is the speed of convergence. For example, in Newton's method the order p = 2 and thus the number of correct significant digits is approximately doubled in each iteration step. But is there an intuitive meaning to be given to the asymptotic error constant C? What does this number mean? What is the difference between two methods that have the same order p, but for a different C?
  2. jcsd
  3. Feb 4, 2009 #2
    As I understand it, if they are of the same order, the method with a smaller C will converge faster.
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?

Similar Discussions: Rate of convergence and asymptotic error constant
  1. Rate of Convergence (Replies: 3)

  2. Rate of convergence (Replies: 7)