RCL series circuit analysis: Damping Constant

  • Thread starter Thread starter hoangpham4696
  • Start date Start date
  • Tags Tags
    Analysis
AI Thread Summary
The discussion focuses on finding the damping constant for an RCL circuit, with the user calculating it as 1.296 based on their analysis. They assert that at t > infinity, the switch will be closed, making the equivalent resistance (Req) equal to Rx, which they clarify is actually R1. Questions arise regarding the terminology used, such as the meaning of "t > infinity" and the absence of Rx in the circuit. Additionally, there is confusion about the application of the critical damping equation and whether it is appropriate for the given scenario. The user seeks confirmation of their approach and calculations.
hoangpham4696
Messages
5
Reaction score
1
Homework Statement
Please help me to confirm if my approach is correct. If not, please guide me to a right approach. Thank you
Relevant Equations
$$ \zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})$$

$$v(c)=A_{1}exp(\frac{-t}{\tau_{1}})+A_{2}exp(\frac{-t}{\tau_{2}})+A_{3}$$
I am trying to find a damping constant of this circuit and below is my analysis. I just want to confirm if my approach is correct.

At t > infiniti, the switch will be closed. Therefore, Req for damping constant equation will just be Rx because R2 because R2 is neither in series or parallel with R1. As per calculation, damping constant is equal to:

$$\zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})=\frac{3}{2}(\sqrt{\frac{6.8nF}{9.1mH}})=1.296$$

In this case, the equation for critical damping RCL circuit will be:

$$v(c)=A_{1}exp(\frac{-t}{\tau_{1}})+A_{2}exp(\frac{-t}{\tau_{2}})+A_{3}$$

Switch is close when t> Infiniti. Therefore, ##A_{3}## will be 0.

Please help to confirm if my approach is correct. Thank you so much.

Screen Shot 2024-10-13 at 13.21.40 PM.png
 
Last edited:
Physics news on Phys.org
hoangpham4696 said:
Homework Statement: Please help me to confirm if my approach is correct.

Can you please post the complete, verbatim problem statement ?


hoangpham4696 said:
$$v(c)=A_{1}\exp(\frac{-t}{\tau_{1}})+A_{2}\exp(\frac{-t}{\tau_{2}})+A_{3} \tag{1}$$
Where did you get (1) ?

hoangpham4696 said:
At t > infiniti, the switch will be closed. Therefore, Req for damping constant equation will just be Rx because R2 because R2 is neither in series or parallel with R1. As per calculation, damping constant is equal to:

$$\zeta=\frac{R}{2}(\sqrt{\frac{C}{L}})=\frac{3}{2}(\sqrt{\frac{6.8nF}{9.1mH}})=1.296$$

In this case, the equation for critical damping RCL circuit will be:

$$v(c)=A_{1}\exp(\frac{-t}{\tau_{1}})+A_{2}\exp(\frac{-t}{\tau_{2}})+A_{3}$$

Switch is close when t> Infiniti. Therefore, ##A_{3}## will be 0.


1. What do you mean with t> Infiniti

2. there is no Rx anywhere in sight. Do you mean R1 ?

3. Did you notice I1 is a current source ?

4. 'this case'? Where does the 'critical damping come from ? Does (1) apply to that case ?

##\ ##
 
  • Like
Likes SammyS and berkeman
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top