Ready to Tackle an Advanced Calculus Challenge?

  • Context: MHB 
  • Thread starter Thread starter Shobhit
  • Start date Start date
  • Tags Tags
    Challenge Integration
Click For Summary

Discussion Overview

The discussion revolves around evaluating complex definite integrals involving logarithmic and trigonometric functions, specifically focusing on the integral of the form $$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta$$ and its equivalence to other forms. The scope includes advanced calculus techniques, transformations, and connections to elliptic integrals and hypergeometric functions.

Discussion Character

  • Exploratory
  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • One participant presents an integral to evaluate and claims it is more challenging than a previously discussed problem.
  • Another participant proposes an equivalence transformation of the integral, showing multiple forms and substitutions leading to a connection with elliptic integrals.
  • A formula involving the complete elliptic integral of the first kind is introduced, suggesting a relationship to the original integral.
  • One participant expresses difficulty in solving the integral, noting the complexity introduced by elliptic integrals and hypergeometric functions.
  • A modification of the original problem is suggested, presenting a new integral that is claimed to be even more challenging, along with a proposed solution involving logarithmic and gamma functions.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the evaluation of the integrals, with some expressing success in transformations while others indicate difficulty. The discussion remains unresolved regarding the overall evaluation of the integrals presented.

Contextual Notes

The discussion includes various transformations and assumptions about the integrals, but does not resolve the mathematical steps or the implications of the transformations fully. The dependence on specific definitions and properties of elliptic integrals and gamma functions is also noted.

Shobhit
Messages
21
Reaction score
0
Show that

$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$

This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D
 
Physics news on Phys.org
I'm just going to show that it is equivalent to another definite integral.
$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \int_{0}^{\pi /2} \frac{\log (\tan x)}{\sqrt{2-\sin^{2} x}} \ dx = \frac{1}{\sqrt{2}} \int_{0}^{\pi /2} \frac{\log(\tan x)}{\sqrt{1- \frac{1}{2} \sin^{2} x}} \ dx $$Let $ u = \tan x$.$$ = \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{\log u}{\sqrt{1- \frac{1}{2} \frac{u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{\frac{2+u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = $$

$$ = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(2+u^{2})}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(1 - i^2+u^{2})}} \ du $$There is a formula that states $$ \int_{0}^{\infty} \frac{\log x}{\sqrt{(1+x^{2})(1-k^{2} + x^{2})}} \ dx = \frac{1}{2} K(k) \ln( \sqrt{1-k^{2}})$$

where $K(k)$ is the complete elliptic integral of the first kind.A derivation in one of Victor Moll's papers uses a crazy-looking hypergeometric identity.So anyways

$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \frac{1}{2} K(i) \ln (\sqrt{2}) = \frac{\log 2}{16 \sqrt{2 \pi}} \Gamma^{2} \left( \frac{1}{4} \right)$$

which by the Gamma reflection formula is equivalent to the answer given
 
Not surprised to see elliptic integrals and hypergeometric functions involved. I tried to solve it with no success.
 
Well done RV! :)

Now, I am going to modify this problem slightly to make it even more challenging.Show that

$$
\int_0^{\pi\over 2}\frac{\log(\tan x)}{\sqrt{2} \sin(x)+\sqrt{1+\sin^2 x}}dx = \frac{1}{\sqrt{2\,\pi}}\left(1+\frac{\log 2}{4} \right)\Gamma\left(\frac34\right)^2-\frac{\sqrt{2\,\pi^3}}{8\Gamma\left(\frac34\right)^{2}}+(\log 2-1)\,\sqrt2
$$
 

Similar threads

  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K