MHB Ready to Tackle an Advanced Calculus Challenge?

AI Thread Summary
The discussion revolves around evaluating the integral $$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta$$ and demonstrating its equivalence to another integral form. Participants highlight the use of transformations and substitutions, particularly involving the tangent function and elliptic integrals, to simplify the problem. The solution ultimately connects to known results involving the Gamma function and elliptic integrals, revealing a complex relationship between these mathematical entities. A modified version of the integral is proposed for further exploration, adding to the challenge. The conversation showcases advanced techniques in calculus and integral evaluation.
Shobhit
Messages
21
Reaction score
0
Show that

$$\int_0^{\frac{\pi}{2}}\frac{\log \tan \theta}{\sqrt{1+\cos^2 \theta}}d\theta = \frac{\log 2}{16 \Gamma \left(\frac{3}{4} \right)^2}\sqrt{2\pi^3}$$

This integral is harder than the http://mathhelpboards.com/challenge-questions-puzzles-28/integration-challenge-7720.html. :D
 
Mathematics news on Phys.org
I'm just going to show that it is equivalent to another definite integral.
$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \int_{0}^{\pi /2} \frac{\log (\tan x)}{\sqrt{2-\sin^{2} x}} \ dx = \frac{1}{\sqrt{2}} \int_{0}^{\pi /2} \frac{\log(\tan x)}{\sqrt{1- \frac{1}{2} \sin^{2} x}} \ dx $$Let $ u = \tan x$.$$ = \frac{1}{\sqrt{2}} \int_{0}^{\infty} \frac{\log u}{\sqrt{1- \frac{1}{2} \frac{u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{\frac{2+u^{2}}{1+u^{2}}}} \frac{1}{1+u^{2}} \ du = $$

$$ = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(2+u^{2})}} \ du = \int_{0}^{\infty} \frac{\log u}{\sqrt{(1+u^{2})(1 - i^2+u^{2})}} \ du $$There is a formula that states $$ \int_{0}^{\infty} \frac{\log x}{\sqrt{(1+x^{2})(1-k^{2} + x^{2})}} \ dx = \frac{1}{2} K(k) \ln( \sqrt{1-k^{2}})$$

where $K(k)$ is the complete elliptic integral of the first kind.A derivation in one of Victor Moll's papers uses a crazy-looking hypergeometric identity.So anyways

$$ \int_0^{\pi /2}\frac{\log ( \tan x) }{\sqrt{1+\cos^2 x }}\ dx = \frac{1}{2} K(i) \ln (\sqrt{2}) = \frac{\log 2}{16 \sqrt{2 \pi}} \Gamma^{2} \left( \frac{1}{4} \right)$$

which by the Gamma reflection formula is equivalent to the answer given
 
Not surprised to see elliptic integrals and hypergeometric functions involved. I tried to solve it with no success.
 
Well done RV! :)

Now, I am going to modify this problem slightly to make it even more challenging.Show that

$$
\int_0^{\pi\over 2}\frac{\log(\tan x)}{\sqrt{2} \sin(x)+\sqrt{1+\sin^2 x}}dx = \frac{1}{\sqrt{2\,\pi}}\left(1+\frac{\log 2}{4} \right)\Gamma\left(\frac34\right)^2-\frac{\sqrt{2\,\pi^3}}{8\Gamma\left(\frac34\right)^{2}}+(\log 2-1)\,\sqrt2
$$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top