Real Analysis - Infimum and Supremum Proof

Click For Summary
SUMMARY

The discussion centers on a proof regarding the properties of functions defined on a non-empty set D, specifically focusing on the relationships between the supremum of f(D) and the infimum of g(D) when f(x) ≤ g(y) for all x, y in D. The proof demonstrates that if f(D) is bounded above and g(D) is bounded below, then sup f(D) ≤ inf g(D) holds true. Key insights include the use of a lemma stating that if f(x) ≤ A for all x in D, then sup f(D) ≤ A, which simplifies the proof process.

PREREQUISITES
  • Understanding of real analysis concepts, specifically supremum and infimum.
  • Familiarity with functions and their properties in mathematical analysis.
  • Knowledge of proof techniques, including proof by contradiction.
  • Basic comprehension of set theory and the concept of bounded sets.
NEXT STEPS
  • Study the properties of supremum and infimum in real analysis.
  • Learn about proof techniques in mathematics, particularly proof by contradiction.
  • Explore the implications of bounded sets in analysis and their applications.
  • Investigate the relationship between functions and their images in set theory.
USEFUL FOR

Mathematics students, particularly those studying real analysis, educators teaching mathematical proofs, and anyone interested in the foundational concepts of supremum and infimum in function analysis.

zigzagdoom
Messages
27
Reaction score
0
Hi Guys,

I am self teaching myself analysis after a long period off. I have done the following proof but was hoping more experienced / adept mathematicians could look over it and see if it made sense.

Homework Statement


Question:

Suppose D is a non empty set and that f: D → ℝ and g: D →ℝ. If for x,y ∈ D, f(x) ≤ g(y), then f(D) is bounded above and g(D) is bounded below.
Furthermore, sup f(D) ≤ inf g(D).

Homework Equations


N/A

The Attempt at a Solution



Assume that there exists a set such as in the question.
Since f(x) ≤ g(y) ∀ x,y ∈ D , f(x) is bounded above and g(y) is bounded below.
Now, let supf(D)=A and let infg(D)=B . Then ∀ x ∈ D, f(x) ≤ A and ∀ y ∈ D, g(y) ≥ B .
Assume: ¬ ( A ≤ B ) ↔ A>B and A ≠ B. But if A>B , then supf(D)>infg(D) .
This means ∃ g(D) ≤ supf(D) which in turn means ∃ f(D)>g(D) .
But this is a contradiction as ∀ x,y ∈ D, f(D) ≤ g(D) . So it follows A ≤ B. That is sup f(D) ≤ inf g(D).

Thanks!
 
Physics news on Phys.org
Hello zigzagdoom, sorry that I'm not the adept Mathematician you are looking for, but I hope my points make sense. I would perhaps phrase the second sentence of your argument this way:
Since ##D## is non-empty, then the images of ##f## and ##g## are non-empty. Furthermore, as ##f(x) \leq g(y)## for all ##x,y \in D##, then any element in the image of ##f## is a lower bound of ##g(D)##, and any element in the image of ##g## is an upper bound of ##f(D)##; thus, ##g(D)## is bounded below, and ##f(D)## is bounded above.

edit: codomain vs image
 
  • Like
Likes   Reactions: zigzagdoom
Maybe just a nitpick (as what you mean is obvious), but I would rephrase the following:
zigzagdoom said:
This means ∃ g(D) ≤ supf(D) which in turn means ∃ f(D)>g(D)
##f(D)## and ##g(D)## are not numbers, but sets, so I would write something like:

y ∈ D: g(y) < supf(D) which in turn means ∃ x ∈ D: f(x)>g(y)
 
  • Like
Likes   Reactions: zigzagdoom
lordianed said:
Hello zigzagdoom, sorry that I'm not the adept Mathematician you are looking for, but I hope my points make sense. I would perhaps phrase the second sentence of your argument this way:
Since ##D## is non-empty, then the images of ##f## and ##g## are non-empty. Furthermore, as ##f(x) \leq g(y)## for all ##x,y \in D##, then any element in the image of ##f## is a lower bound of ##g(D)##, and any element in the image of ##g## is an upper bound of ##f(D)##; thus, ##g(D)## is bounded below, and ##f(D)## is bounded above.

edit: codomain vs image
Thank you, very helpful indeed.
 
Samy_A said:
Maybe just a nitpick (as what you mean is obvious), but I would rephrase the following:
##f(D)## and ##g(D)## are not numbers, but sets, so I would write something like:

y ∈ D: g(y) < supf(D) which in turn means ∃ x ∈ D: f(x)>g(y)
Thanks for the clarification!
 
ll
zigzagdoom said:
Hi Guys,

I am self teaching myself analysis after a long period off. I have done the following proof but was hoping more experienced / adept mathematicians could look over it and see if it made sense.

Homework Statement


Question:

Suppose D is a non empty set and that f: D → ℝ and g: D →ℝ. If for x,y ∈ D, f(x) ≤ g(y), then f(D) is bounded above and g(D) is bounded below.
Furthermore, sup f(D) ≤ inf g(D).

Homework Equations


N/A

The Attempt at a Solution



Assume that there exists a set such as in the question.
Since f(x) ≤ g(y) ∀ x,y ∈ D , f(x) is bounded above and g(y) is bounded below.
Now, let supf(D)=A and let infg(D)=B . Then ∀ x ∈ D, f(x) ≤ A and ∀ y ∈ D, g(y) ≥ B .
Assume: ¬ ( A ≤ B ) ↔ A>B and A ≠ B. But if A>B , then supf(D)>infg(D) .
This means ∃ g(D) ≤ supf(D) which in turn means ∃ f(D)>g(D) .But this is a contradiction as ∀ x,y ∈ D, f(D) ≤ g(D) . So it follows A ≤ B. That is sup f(D) ≤ inf g(D).

Thanks!

I think you can simplify and clean up your sup f <= inf g argument a bit, if you first prove a helpful little Lemma: if ##f(x) \leq A## for all ##x \in D## then ##\sup_{x \in D} f(x) \leq A## (and a similar result applies to the inf when ##g(y) \geq B## for all ##y \in D\:##).

Using the Lemma we have that ##f(x) \leq g(y) ## for all ##x,y \in D## implies ##\sup_D f \leq g(y)## for any ##y \in D##; then the Lemma again gives ##\sup_D f \leq \inf_D g##.
 
  • Like
Likes   Reactions: zigzagdoom
Ray Vickson said:
ll

I think you can simplify and clean up your sup f <= inf g argument a bit, if you first prove a helpful little Lemma: if ##f(x) \leq A## for all ##x \in D## then ##\sup_{x \in D} f(x) \leq A## (and a similar result applies to the inf when ##g(y) \geq B## for all ##y \in D\:##).

Using the Lemma we have that ##f(x) \leq g(y) ## for all ##x,y \in D## implies ##\sup_D f \leq g(y)## for any ##y \in D##; then the Lemma again gives ##\sup_D f \leq \inf_D g##.

Thanks a lot.

For proof of the Lemma here is my attempt (by symmtery similar for B):

Lemma:
If f(x) ≤ A ∀ x ∈ D then supf(x) ≤ A.

Proof of Lemma (by contradiction):
Assume that f(x) ≤ A ∀ x ∈ D and supf(x) > A. Then we have that f(x) ≤ supf(D) and supf(x) > supf(D)

Let K be the set consisting of all f(x) , then supf(D) is an upper bound of K.

Since supf(x) is the least upper bound of K, and supf(x) > supf(D) , ∃ f(x) ∈ K such that f(x) ≥ supf(D) .

But this is a contradiction as supf(D) is an upper bound of A.Therefore ¬supf(x) > A ↔ supf(x) ≤ A
 
Last edited:
For completeness, updated proof attempt, building on the interpreted guidance of those on PF:

Proof Strategy 1
Assume that there exists a set such as D.

Since f(x) ≤ g(y) ∀ x,y ∈ D , f(x) is bounded above and g(y) is bounded below.

Now, let supf(D) = A and let infg(D) = B . Then ∀ x ∈ D, f(x) ≤ A and ∀ y ∈ D, g(y) ≥ B .

Assume: ¬ ( A ≤ B ) ↔ A > B and A ≠ /B. But if A>B , then supf(D) > infg(D) .

This means ∃ x ∈ D such that g(D) ≤ supf(D) which in turn implies ∃ y ∈ D such that f(D) > g(D)

But this is a contradiction as ∀ x,y ∈ D, f(D) ≤ g(D) . So it follows A ≤ B.
Proof Strategy 1
Assume that there exists a set such as D.

Since f(x) ≤ g(y) ∀ x,y ∈ D, f(x) is bounded above and g(y) is bounded below.

Now, let supf(D) = A and let infg(D) = B . Then ∀ x ∈ D, f(x) ≤ A and ∀ y ∈ D, g(y) ≥ B .

Lemma 1:
If f(x) ≤ A, ∀ x ∈ D then supf(x) ≤ A.

Using Lemma 1, since f(x) ≤ g(y) ∀ x,y ∈ D → supf(x) ≤ g(y), ∀y∈D

Applying Lemma 1 again, since supf(x) ≤ g(y), ∀y∈D → supf(x) ≤ inf g(y), since infg(y) ≤ g(y), ∀y∈D
 

Similar threads

Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
15
Views
2K
Replies
4
Views
1K
Replies
3
Views
2K
Replies
9
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
6
Views
3K