MHB Real Numbers $a,\,b,\,c$ Solving System of Equations

Click For Summary
The discussion revolves around solving a system of equations involving real numbers a, b, and c. The first equation is a + b + c = 1, while the second equation combines fractions and products of a, b, and c. Participants express frustration with the complexity of the equations, particularly the second one. The challenge lies in finding values for a, b, and c that satisfy both equations simultaneously. Ultimately, the focus is on determining the solutions to this mathematical problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the real numbers $a,\,b$ and $c$ that satisfy the following system of equations:

$\begin{align*}a + b + c &= 1\\ \dfrac{a}{ 1 - a}+\dfrac{b}{1 - b} + \dfrac{c}{1 - c} &= 6ac + 6bc = (a + 1)(b + 1)\end{align*}$
 
Mathematics news on Phys.org
Ick! :sick:

-Dan
 
I'm sure there's an elegant and simple solution to this... However, I wasn't able to see it, so I did it in hard way.

We have
\[ \begin{cases} a + b + c = 1 \qquad (1) \\ \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = L \qquad (2) \\ 6c(a + b) = L \qquad (3) \\ (a + 1)(b + 1) = L. \qquad (4) \end{cases} \]

Let's write \( a + b = A. \) Then from (1) \[ c = 1 - A, \]
and from (3) \[ L = 6A(1 - A). \]
Substitute these into (2) and solve the product \( ab = L - A - 1 \) from (4). After simplifying we obtain \[ 36A^4 - 60A^3 + 6A^2 + 19A - 6 =0. \]

Because I like to challenge myself, I completed this to square by solving the cubic equation from the discriminant of quadratic equation... For simplicity I write just few intermediate steps, as there's nothing fancy here:

Put \( A = x + \frac{5}{12}. \Rightarrow \) \[ (16x^2 - 7)^2 = \frac{460}{9} - \frac{608x}{27} \qquad \Rightarrow \] \[ (16x^2 - 7 + q)^2 = 32qx^2 - \frac{608}{27}x + q^2 - 14q + \frac{460}{9} \qquad \Rightarrow \] \[ 729q^3 - 10206q^2 + 37260q - 2888 = 0 \]

Then just write down the solutions: \[ q = \frac{14}{3} + \frac{\sqrt[3]{16\sqrt{287185} - 11408}}{9} + \frac{128}{3\sqrt[3]{16\sqrt{287185} - 11408}} \] \[ x = -\frac{\epsilon \sqrt{2q}}{8} + \frac{\delta}{96\sqrt{3}} \sqrt{-864q + 12096 + \frac{2432\epsilon \sqrt{2q}}{q}}\]

Greek letters take value -1 or 1 to cover all possibilities. Now only \( \epsilon = 1 \) gives real solutions, which we were asked for. \[ A = \frac{10 - 3\sqrt{2q}}{24} + \frac{\delta}{96\sqrt{3}} \sqrt{-864q + 12096 + \frac{2432\sqrt{2q}}{q}}\]

Final solutions: \[ \begin{cases}A \approx -0.5695729\ldots \\ L \approx -5.3639173\ldots \\ c \approx 1.5695729\ldots \\ a,b = \frac{A \pm \sqrt{A^2 - 4(L - A - 1)}}{2} \approx \{ -2.7087187\ldots , 2.1391458\ldots \}\end{cases} \] \[ \begin{cases} A \approx 1.303395799\ldots \\ L \approx -2.37266886\ldots \\ c \approx -0.303395799\ldots \\ a,b \approx \{ -1.60679159\ldots , 2.910187\ldots \} \end{cases} \]
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
1K