MHB Real Numbers $a,\,b,\,c$ Solving System of Equations

Click For Summary
The discussion revolves around solving a system of equations involving real numbers a, b, and c. The first equation is a + b + c = 1, while the second equation combines fractions and products of a, b, and c. Participants express frustration with the complexity of the equations, particularly the second one. The challenge lies in finding values for a, b, and c that satisfy both equations simultaneously. Ultimately, the focus is on determining the solutions to this mathematical problem.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all the real numbers $a,\,b$ and $c$ that satisfy the following system of equations:

$\begin{align*}a + b + c &= 1\\ \dfrac{a}{ 1 - a}+\dfrac{b}{1 - b} + \dfrac{c}{1 - c} &= 6ac + 6bc = (a + 1)(b + 1)\end{align*}$
 
Mathematics news on Phys.org
Ick! :sick:

-Dan
 
I'm sure there's an elegant and simple solution to this... However, I wasn't able to see it, so I did it in hard way.

We have
\[ \begin{cases} a + b + c = 1 \qquad (1) \\ \frac{a}{1-a} + \frac{b}{1-b} + \frac{c}{1-c} = L \qquad (2) \\ 6c(a + b) = L \qquad (3) \\ (a + 1)(b + 1) = L. \qquad (4) \end{cases} \]

Let's write \( a + b = A. \) Then from (1) \[ c = 1 - A, \]
and from (3) \[ L = 6A(1 - A). \]
Substitute these into (2) and solve the product \( ab = L - A - 1 \) from (4). After simplifying we obtain \[ 36A^4 - 60A^3 + 6A^2 + 19A - 6 =0. \]

Because I like to challenge myself, I completed this to square by solving the cubic equation from the discriminant of quadratic equation... For simplicity I write just few intermediate steps, as there's nothing fancy here:

Put \( A = x + \frac{5}{12}. \Rightarrow \) \[ (16x^2 - 7)^2 = \frac{460}{9} - \frac{608x}{27} \qquad \Rightarrow \] \[ (16x^2 - 7 + q)^2 = 32qx^2 - \frac{608}{27}x + q^2 - 14q + \frac{460}{9} \qquad \Rightarrow \] \[ 729q^3 - 10206q^2 + 37260q - 2888 = 0 \]

Then just write down the solutions: \[ q = \frac{14}{3} + \frac{\sqrt[3]{16\sqrt{287185} - 11408}}{9} + \frac{128}{3\sqrt[3]{16\sqrt{287185} - 11408}} \] \[ x = -\frac{\epsilon \sqrt{2q}}{8} + \frac{\delta}{96\sqrt{3}} \sqrt{-864q + 12096 + \frac{2432\epsilon \sqrt{2q}}{q}}\]

Greek letters take value -1 or 1 to cover all possibilities. Now only \( \epsilon = 1 \) gives real solutions, which we were asked for. \[ A = \frac{10 - 3\sqrt{2q}}{24} + \frac{\delta}{96\sqrt{3}} \sqrt{-864q + 12096 + \frac{2432\sqrt{2q}}{q}}\]

Final solutions: \[ \begin{cases}A \approx -0.5695729\ldots \\ L \approx -5.3639173\ldots \\ c \approx 1.5695729\ldots \\ a,b = \frac{A \pm \sqrt{A^2 - 4(L - A - 1)}}{2} \approx \{ -2.7087187\ldots , 2.1391458\ldots \}\end{cases} \] \[ \begin{cases} A \approx 1.303395799\ldots \\ L \approx -2.37266886\ldots \\ c \approx -0.303395799\ldots \\ a,b \approx \{ -1.60679159\ldots , 2.910187\ldots \} \end{cases} \]
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K