MHB Real Roots of Cubic Equation: $x^3+a^3x^2+b^3x+c^3=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
An equation $x^3+ax^2+bx+c=0$ has three (but not necessarily distinct) real roots $t,\,u,\,v$. For what values of $a,\,b,\,c$ are the numbers $t^3,\,u^3,\,v^3$ roots of an equation $x^3+a^3x^2+b^3x+c^3=0$?
 
Mathematics news on Phys.org
Let $P(x)=x^3+ax^2+bx+c$ with roots $t,\,u,\,v$ and $Q(x)=x^3+a^3x^2+b^3x+c^3$ whose roots are $t^3,\,u^3,\,v^3$ respectively. By the Viete formula, we have

$t+u+v=-a,\\tu+uv+vt=b,\\tuv=-c$ and

$t^3+u^3+v^3=-a^3,\\(tu)^3+(uv)^3+(vt)^3=b^3,\\(tuv)^3=-c^3$

Note that

$(t+u+v)^3=t^3+u^3+v^3+3(t+u+v)(tu+uv+vt)-3tuv$

which gives $-a^3=-a^3-3ab+3c$, or equivalently, $c=ab$. In this case $Q(x)$ has the form

$Q(x)=x^3+a^3x^2+b^3x+(ab)^3=(x+a^3)(x^2+b^3)$

This polynomial has a root $x=-a$ and for the other two roots we should have $b\le 0$. Thus the conditions are

$ab=c,\\ b\le 0$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top