MHB Real Roots of Cubic Equation: $x^3+a^3x^2+b^3x+c^3=0$

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Cubic Roots
Click For Summary
The discussion focuses on the conditions under which the roots of the cubic equation $x^3 + ax^2 + bx + c = 0$, denoted as $t, u, v$, can be transformed into the roots of another cubic equation $x^3 + a^3x^2 + b^3x + c^3 = 0$ by cubing them. Participants explore the relationships between the coefficients $a, b, c$ and the roots $t^3, u^3, v^3$. The conversation delves into the implications of Vieta's formulas and how they apply to both equations. Key points include the necessity for specific relationships among the coefficients to ensure that the cubed roots satisfy the new equation. The discussion concludes with insights into the algebraic manipulation required to derive these relationships.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
An equation $x^3+ax^2+bx+c=0$ has three (but not necessarily distinct) real roots $t,\,u,\,v$. For what values of $a,\,b,\,c$ are the numbers $t^3,\,u^3,\,v^3$ roots of an equation $x^3+a^3x^2+b^3x+c^3=0$?
 
Mathematics news on Phys.org
Let $P(x)=x^3+ax^2+bx+c$ with roots $t,\,u,\,v$ and $Q(x)=x^3+a^3x^2+b^3x+c^3$ whose roots are $t^3,\,u^3,\,v^3$ respectively. By the Viete formula, we have

$t+u+v=-a,\\tu+uv+vt=b,\\tuv=-c$ and

$t^3+u^3+v^3=-a^3,\\(tu)^3+(uv)^3+(vt)^3=b^3,\\(tuv)^3=-c^3$

Note that

$(t+u+v)^3=t^3+u^3+v^3+3(t+u+v)(tu+uv+vt)-3tuv$

which gives $-a^3=-a^3-3ab+3c$, or equivalently, $c=ab$. In this case $Q(x)$ has the form

$Q(x)=x^3+a^3x^2+b^3x+(ab)^3=(x+a^3)(x^2+b^3)$

This polynomial has a root $x=-a$ and for the other two roots we should have $b\le 0$. Thus the conditions are

$ab=c,\\ b\le 0$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...