MHB Rearranging simple equation by making x the subject: 205 = ((4*pi*x*f)/c)^2

  • Thread starter Thread starter duckau
  • Start date Start date
AI Thread Summary
The discussion focuses on rearranging the equation 205 = ((4*pi*x*f)/c)^2 to isolate x. The initial attempts included manipulating the equation but led to incorrect evaluations. A clearer method was suggested, involving taking the square root and then isolating x by reversing the operations. The final correct expression for x is x = ±(c√205)/(4πf). The participant expressed gratitude for the helpful advice on working backwards in the equation.
duckau
Messages
2
Reaction score
0
Hi,

It's been a while and I'm a bit rusty.. I am attempting to rearrange the following equation to make x the subject:

205 = ((4*pi*x*f)/c)^2I have attempted:

205/x^2 = ((4*pi)^2*f^2) / c^2
x^2/205 = c^2/(4*pi)^2*f^2

then

x^2 = 205 * (c^2/((4*pi)^3)*f^2)
x = \sqrt{205*(c^2/((4*pi)^2)*f^2)}

Unfortunately my answer doesn't evaluate. Any tips on my process?

Thanks!
 
Mathematics news on Phys.org
Hi duckau and welcome to MHB! :D

$$205=\left(\frac{4\pi x f}{c}\right)^2$$

$$\pm\sqrt{205}=\frac{4\pi x f}{c}$$

$$\pm\frac{\sqrt{205}c}{4\pi f}=x$$

Does that help?
 
"Back out" of the expression by "undoing" each thing that was done to x:
We have $\left(\frac{4\pi x f}{c}\right)^2= 205$. Since the last thing done is squaring, the first thing we do is take the square root of each side: $\frac{4\pi x f}{c}= \pm\sqrt{205}$. On the left we are dividing by c so multiply both sides by c: $4\pi x f= \pm c\sqrt{205}$. We now have x multiplied by $4\pi f$ so, finally, divide both sides by $4\pi f$:

$x= \pm \frac{c\sqrt{205}}{4\pi f}$.
 
Thanks a lot.. that's exactly what I was after.

I appreciate the advice regarding working backwards instead of attempting to solve the equation!

Regards.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
5
Views
2K
Replies
3
Views
1K
Replies
3
Views
2K
Replies
6
Views
2K
Replies
5
Views
2K
Replies
2
Views
1K
Back
Top