# Rectilinear motion of a particle

A particle of mass m moves without friction subject to a force F(x) =
−kx + $\frac{kx3}{A2}$, where k and A are positive constants. It is projected
from x = 0 to the positive x direction with initial velocity v0 =
A$\sqrt{\frac{k}{2m}}$. Find:
(a) the potential energy V (x),
(b) the kinetic energy T(x),
(c) the turning points of the motion.

So I don't know if I am on the right track, I feel I am missing something. For V(x) (potential energy), i got:
$\frac{1}{2}$ kx$^{2}$ - $\frac{1}{4}$ $\frac{kx^{4}}{A^{2}}$

Then I found T(x) (kinetic energy) to be:
T$_{o}$ - $\frac{1}{2}$kx$^{2}$ - $\frac{1}{4}$ $\frac{kx^{4}}{A^{2}}$

I know I am given an initial V$_{o}$, but where would I plug that in to find V(x) or T(x)?

Any help is very much appreciated.

Regards

Related Introductory Physics Homework Help News on Phys.org
Anyone? Do I need to include other attempts?

Hi,
It seems to me you've done very well so far.
You did correctly work out, that under a central force expressible as:
$\vec{F} = -\vec{\nabla}{V}$
$V(x) = -\displaystyle \int_0^x{Fdx}$