(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

Let [tex]x_1 < x_2[/tex] be arbitrary real numbers and let [tex]x_n :=\frac{1}{3}x_{n-1} + \frac{2}{3}x_{n-2}[/tex]. Prove the sequence [tex](x_n)[/tex] converges.

2. Relevant equations

Since this problem comes from the section on Cauchy sequences, I assume we will need to show [tex](x_n)[/tex] is a Cauchy sequence. I'm not so well-versed in working with the recursive sequences especially with arbitrary initial values.

Any advice on getting started?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Recursive sequence convergence

**Physics Forums | Science Articles, Homework Help, Discussion**