My discussion of the Friedmann metric comes from the derivation presented in section 4.2.1 of the reference: https://www1.maths.leeds.ac.uk/~serguei/teaching/cosmology.pdf(adsbygoogle = window.adsbygoogle || []).push({});

I have a couple of simple questions on the derivation. The are placed at points during the derivation.

I note the following for the Friedmann metric for ##k=0##:

\begin{equation}

\begin{split}

\partial \textbf{s}^2 &= -\partial t^2 + a^2(t) \left[ \partial dr^2 + r^2 \left( \partial \theta^2 + \sin^2{\theta}\partial \phi^2 \right)\right]

\end{split}

\end{equation}

Which I rewrite as follows:

\begin{equation}

\begin{split}

\partial \textbf{s}^2 &= -\partial t^2 + a^2(t) \partial \vec{r}^2

\end{split}

\end{equation}

For a zero rest-mass object ##\partial \textbf{s}^2=0##, such that:

\begin{equation}

\begin{split}

\partial t^2 &= a^2(t) \partial \vec{r}^2

\end{split}

\end{equation}

Thus:

\begin{equation}

\begin{split}

\partial t &= a(t) \partial \vec{r}

\end{split}

\end{equation}

Such that:

\begin{equation}

\begin{split}

\frac{\partial t}{a(t)} &= \partial \vec{r}

\end{split}

\end{equation}

Thus, where ##t_E## denotes time at emission, ##t_O## denotes time at observation and ##R_E## denotes radial distance at emission:

\begin{equation}

\begin{split}

\int_{t_E}^{t_O}\frac{\partial t}{a(t)} &= \int_{0}^{R_E}\partial \vec{r}

\end{split}

\end{equation}

QUESTION: Why use ##R_E##? Isn't the distance travelled by the photon ##R_O##, where ##R_0 = R_E + \partial \vec{r}##?

The derivation continues as follows for another photon emitted at ##t_E + dt_E## and observed at ##t_O + dt_O##, such that:

\begin{equation}

\begin{split}

\int_{t_E+dt_E}^{t_O+dt_O}\frac{\partial t}{a(t)} &= \int_{0}^{R_E}\partial \vec{r}

\end{split}

\end{equation}

QUESTION: Again, why use ##R_E##? Isn't the distance travelled for this photon ##R_O + \partial \vec{r}_O + \partial \vec{r}_E?## If ##R_O >> \partial \vec{r}_O + \partial \vec{r}_E##, then ##R_O + \partial \vec{r}_O + \partial \vec{r}_E \approx R_O##. I assume this is the logic.

Continuing the derivation:

\begin{equation}

\begin{split}

\int_{t_E+dt_E}^{t_O+dt_O}\frac{\partial t}{a(t)} - \int_{t_E}^{t_O}\frac{\partial t}{a(t)}&= 0

\end{split}

\end{equation}

Where:

\begin{equation}

\begin{split}

\int_{t_E+dt_E}^{t_O+dt_O}f(t) \partial t &= -f(t_E) \partial t_E+ \int_{t_E}^{t_O+dt_O}f(t) \partial t

\\

&=+f(t_O)\partial t_O - f(t_E) \partial t_E+ \int_{t_E}^{t_O}f(t) \partial t

\end{split}

\end{equation}

Assuming ##f(t) = \frac{1}{a(t)}##:

\begin{equation}

\begin{split}

\frac{\partial t_O}{a(t_O)} - \frac{\partial t_E}{a(t_E)} &=0

\end{split}

\end{equation}

Such that:

\begin{equation}

\begin{split}

\frac{\partial t_O}{\partial t_E} &= \frac{a(t_O)}{a(t_E)}

\end{split}

\end{equation}

Assuming ##T_E = \partial t_E## and ##T_O = \partial t_O##:

\begin{equation}

\begin{split}

\frac{T_O}{T_E} &= \frac{a(t_O)}{a(t_E)}

\end{split}

\end{equation}

Given:

\begin{equation}

\begin{split}

1+z &= \frac{\lambda_O}{\lambda_E}

\\

&=\frac{T_O}{T_E}

\end{split}

\end{equation}

Thus:

\begin{equation}

\begin{split}

1+z &= \frac{a(t_O)}{a(t_E)}

\end{split}

\end{equation}

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Redshift and the Friedmann metric

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**