MHB Reflecting B(3,-1) on Line g: 4y + x - 15 = 0

  • Thread starter Thread starter Monoxdifly
  • Start date Start date
  • Tags Tags
    Line Mirror
Click For Summary
The reflection of point B(3, -1) across line g results in point B'(5, 7). The equation of line g is given as 4y + x - 15 = 0, but calculations show that the correct line should be 4y + x - 16 = 0, which is not listed among the options. The midpoint of the two points is (4, 3), and the slope of the line perpendicular to BB' is -1/4. There is a suggestion that option A may contain a typo, as the derived equation closely resembles it.
Monoxdifly
MHB
Messages
288
Reaction score
0
The point B(3, -1) is reflected by the line g and results in B'(5, 7). The equation of line g is ...
A. 4y + x - 15 = 0
B. 4y + x - 9 = 0
C. 4y + x + 15 = 0
D. 4y - x - 15 = 0
E. 4y - x - 9 = 0

Since I didn't know how to approach the problem in a formal, textbook way, I tried to get... creative. The point of reflection must be exactly in the middle of (3, -1) and (5, 7), that is, (4, 3). Since the mirror must be a line perpendicular to BB' (which has the slope 4) and going through (4, 3), the slope of the mirror is $$-\frac{1}{4}$$ and I substituted it in the $$y-y_1=m(x-x_1)$$ equation. This is what I got:
$$y-3=-\frac{1}{4}(x-4)$$
4(y - 3) = -(x - 4)
4y - 12 = -x + 4
4y + x - 12 - 4 = 0
4y + x - 16 = 0 which is not in any of the options, but really close to the option A. Can we just assume that the option A was a typo? Or did I make a mistake somewhere?
 
Mathematics news on Phys.org
What I would do is observe that the line must pass through the midpoint of the two given points, and be perpendicular to the line through the two given points.The midpoint is:

$$\left(\frac{3+5}{2},\frac{-1+7}{2}\right)=(4,3)$$

The slope is:

$$m=-\frac{\Delta x}{\Delta y}=-\frac{5-3}{7+1}=-\frac{1}{4}$$

Thus, our line is:

$$y-3=-\frac{1}{4}(x-4)$$

Or:

$$4y-12=-x+4$$

Or:

$$4y+x-16=0$$

I agree with your answer. :)
 
Isn't that basically what I did?
 
Monoxdifly said:
Isn't that basically what I did?

Yes...it's just easier for me to work the problem and then compare results.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
6
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K