Graduate Regarding fibrations between smooth manifolds

  • Thread starter Thread starter aalma
  • Start date Start date
  • Tags Tags
    Manifolds Smooth
Click For Summary
The discussion focuses on proving that any locally trivial fibration between smooth manifolds is a quotient map. The first condition for a quotient map is verified by showing that if U is open in Y, then p^{-1}(U) is open in X, using the diffeomorphic properties of the locally trivial fibration. The second condition is established by demonstrating that if f is smooth on U, then f ◦ p is smooth on p^{-1}(U), leveraging the local diffeomorphism to express f in terms of smooth functions on open neighborhoods. The conversation emphasizes the importance of understanding the definitions and properties of fibrations and quotient maps in the context of smooth manifolds. The conclusion drawn is that the proof hinges on the trivial fibration case, simplifying the argument significantly.
aalma
Messages
46
Reaction score
1
Definitions:
1. A map ##p : X → Y## of smooth manifolds is called a trivial fibration with fiber ##Z## which is also a smooth manifold, if there is a diffeomorphism ##θ : X → Y ×Z## such that ##p## is the composition of ##θ## with the natural projection ##pr_1:Y × Z → Y##.
2. A map ##p: X →Y## is a locally trivial fibration with fiber ##Z## if for all ##y \in Y## there exists an open neighborhood ##U⊂Y## of ##y## such that ##p: p^{−1}(U) → U## is a trivial fibration with fiber ##Z##.
3. A smooth map ##p : X → Y## is called a quotient map if the following conditions are fulfilled:
1. ##U ⊂Y## is open iff ##p^{−1}(U)## is open in X.
2. ##f : U →R## is smooth iff ##f ◦p## is a smooth function on ##p^{−1}(U)##.
Now, I need to show that any locally trivial fibration is a quotient map.

Let ##p:X\to Y## a locally trivial fibration.
Well I need to verify the two conditions for a quotient map
  1. ##U ⊂ Y## is open iff ##p^{-1}(U)## is open in ##X##.
  2. ##f : U → R## is smooth iff ##f ◦ p## is a smooth function on ##p^{-1}(U)##.
For the first condition, suppose that ##U## is an open subset of ##Y##. We want to show that ##p^{-1}(U)## is open in ##X##. By the definition of a locally trivial fibration, for every ##y \in U##, there exists an open neighborhood ##V_y## of ##y## such that ##p^{-1}(V_y)## is diffeomorphic to ##V_y × Z## via a diffeomorphism ##θ_y##. Since ##U## is an open subset of ##Y##, we can cover ##U## by the open neighborhoods ##V_y##. That is, ##U = ∪_y V_y##.
Now consider ##p^{-1}(U)##. For any point ##x \in p^{-1}(U)##, we have ##p(x) ∈ U##, so there exists a ##V_y## containing ##p(x)##. Since ##p^{-1}(V_y)## is diffeomorphic to ##V_y × Z## via ##θ_y##, we can write ##x = θ_y(y', z)## for some ##y' \in V_y## and ##z \in Z##. Moreover, since ##V_y## is an open neighborhood of ##y##, we can assume that ##y'## lies in a smaller open set ##U_y## contained in ##V_y##. Therefore, we have ##x = θ_y(y', z) ∈ U_y × Z##, which is contained in ##p^{-1}(V_y)##. Thus, we have shown that every point ##x \in p^{-1}(U)## is contained in an open set of the form ##U_y × Z##, which is diffeomorphic to an open set in ##Y × Z##. Therefore, ##p^{-1}(U)## is an open subset of ##X##.
Does this seem okay?
Next, let's consider the second condition. Suppose that ##f : U → R## is a smooth function on ##U##. We want to show that ##f ◦ p## is a smooth function on ##p^{-1}(U)##. For any point ##x \in p^{-1}(U)##, we have ##p(x) ∈ U##, so there exists a ##V_y## containing ##p(x)##. Since ##p^{-1}(V_y)## is diffeomorphic to ##V_y × Z## via ##θ_y##, we can write ##x = θ_y(y', z)## for some ##y' \in V_y## and ##z \in Z##. Moreover, since ##f## is smooth on ##U##, we can write ##f(y') = g_y(y')## for some smooth function ##g_y## on ##V_y##. Then we have:
##(f ◦ p)(x) = f(p(x)) = f(y') = g_y(y') = (g_y ◦ p')(y', z)##
where ##p'## is the projection ##Y × Z → Y##. We note that ##(g_y ◦ p')## is a smooth function on ##V_y × Z##, which is diffeomorphic to ##p^{-1}(V_y)## via ##θ_y##. Therefore, ##(g_y ◦ p')(y', z)## is a smooth function on ##p^{-1}(V_y)##, which contains ##x##. Since this is true for any ##V_y## containing p(x), we conclude that ##f ◦ p## is a smooth function on ##p^{-1}(U)##.
What do you think?Thanks in advance for any tips..
 
Physics news on Phys.org
i apologize if this is unhelpful, but i hope it may be. First step is to realize it suffices to prove this for a trivial fibration p:YxZ-->Y, in which case it follows almost immediately from the definition of the product topology and the fact that p restricts to a diffeomorphism from Yx{q}-->Y, for any point q in Z.
 
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 43 ·
2
Replies
43
Views
5K
  • · Replies 5 ·
Replies
5
Views
946
  • · Replies 20 ·
Replies
20
Views
5K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
3K