Relation between Matter Power spectrum and Angular power spectrum

Click For Summary
SUMMARY

The discussion centers on the mathematical relationship between the Angular power spectrum, denoted as ##C_{\ell}##, and the 3D Matter power spectrum, represented as ##P(k)##. The integral formulation linking these two spectra is established through the use of spherical Bessel functions, specifically in the equation ##C_{\ell}\left(z, z^{\prime}\right)=\int_{0}^{\infty} d k k^{2} j_{\ell}(k z) j_{\ell}\left(k z^{\prime}\right) P(k)##. The conversation also addresses the dependence of ##C_{\ell}## on redshift and angular quantities, clarifying that it pertains to matter fluctuations rather than temperature fluctuations, which is a common misconception.

PREREQUISITES
  • Understanding of Angular power spectrum and its notation ##C_{\ell}##
  • Familiarity with 3D Matter power spectrum and its notation ##P(k)##
  • Knowledge of spherical Bessel functions and their properties
  • Basic concepts of cosmology, particularly redshift and multipole moments
NEXT STEPS
  • Study the mathematical properties of spherical Bessel functions in depth
  • Explore the implications of redshift on the evolution of the Matter power spectrum
  • Investigate the Legendre transformation and its role in relating angular and 3D power spectra
  • Examine the differences between Matter Angular power spectrum and Cosmic Microwave Background (CMB) Angular power spectrum
USEFUL FOR

Cosmologists, astrophysicists, and researchers in theoretical physics who are analyzing the relationships between different power spectra in cosmology and their implications for understanding the universe's structure and evolution.

fab13
Messages
300
Reaction score
7
TL;DR
I would like to go deeper in the relationship between Matter power spectrum and Angular power spectrum.
From a previous post about the Relationship between the angular and 3D power spectra , I have got a demonstration making the link between the Angular power spectrum ##C_{\ell}## and the 3D Matter power spectrum ##P(k)## :

1) For example, I have the following demonstration,
##
C_{\ell}\left(z, z^{\prime}\right)=\int_{0}^{\infty} d k k^{2} j_{\ell}(k z) j_{\ell}\left(k z^{\prime}\right) P(k)
##
where ##j_{\ell}## are the spherical Bessel functions.

Given

## \tag{1}
C_{\ell}\left(z, z^{\prime}\right)=\int_{0}^{\infty} d k k^{2} j_{\ell}(k z) j_{\ell}\left(k z^{\prime}\right) P(k)
##
Question: how to invert the integral to find the function ##P(k)##?
==>

The closure relation for spherical Bessel function:

## \tag{2}
\int_0^\infty x^2 j_n(xu) j_n(xv) dx = \frac{\pi}{2u^2} \delta(u-v).
##

Multipy Eq.(1) with ##z^2 j_\ell(qz)## and integral over ##z##:

\begin{align}
\int_0^\infty z^2 j_\ell(qz) C_{\ell}\left(z, z^{\prime}\right) dz =&\int_{0}^{\infty} d k k^{2} \left\{ \int^0_\infty z^2 dz j_\ell(qz) j_{\ell}(k z)\right\} j_{\ell}\left(k z^{\prime}\right) P(k) \\
=&\int_{0}^{\infty} d k k^{2} \left\{\frac{\pi}{2q^2} \delta(q-k)\right\} j_{\ell}\left(k z^{\prime}\right) P(k) \\
=& q^{2} \frac{\pi}{2q^2} j_{\ell}\left(q z^{\prime}\right) P(q) \tag{3}.
\end{align}

Once again multiply Eq.(3) with ##z'^2 j_\ell(q'z')## and integral over ##z'##

\begin{align}
\int_0^\infty z'^2 dz' j_\ell(q'z') \int_0^\infty z^2 j_\ell(qz) C_{\ell}\left(z, z^{\prime}\right) dz
=& \frac{\pi}{2} \left\{\int_0^\infty z'^2 dz' j_\ell(q'z') j_{\ell}(q z') \right\} P(q).\\
=& \frac{\pi}{2} \left\{ \frac{\pi}{2q'^2} \delta(q-q') \right\} P(q) \tag{4}.\\
\end{align}

To move the ##\delta## function in the right-hand-side, we multiply Eq. (4) (note that only ##q=q'## has contribution) with ##q'^2## and integral over ##q'##:

\begin{align}
\int_0^\infty dq' q'^2\int_0^\infty z'^2 dz' j_\ell(q'z') \int_0^\infty z^2 j_\ell(q'z) C_{\ell}\left(z, z'\right) dz
=& \frac{\pi^2}{4} \int_0^\infty dq' \delta(q-q') P(q).\\
=& \frac{\pi^2}{4} P(q) \tag{5}.
\end{align}

The left-hand-side of Eq.(5);

\begin{align}
\int_0^\infty dq' & q'^2\int_0^\infty z'^2 dz' j_\ell(q'z') \int_0^\infty z^2 j_\ell(q'z) C_{\ell}\left(z, z'\right) dz \\
= & \int_0^\infty z'^2 dz' \int_0^\infty z^2 dz \left\{ \int_0^\infty dq' q'^2 j_\ell(q'z') j_\ell(q'z) \right\} C_{\ell}(z, z') \\
= & \int_0^\infty z'^2 dz' \int_0^\infty z^2 dz \left\{ \frac{\pi}{2z^2} \delta(z-z') \right\} C_{\ell}(z, z') \\
= & \frac{\pi}{2} \int_0^\infty z^2 dz C_{\ell}(z, z). \tag{6}
\end{align}Combine Eq.(5) and Eq.(6)

##
P(q) = \frac{2}{\pi} \int_0^\infty z^2 dz C_{\ell}(z, z).
##

2) I am surprized that ##C_{\ell}## has no dependence in 𝑘 scale ? only angular dependent and redshift dependent ? since only redshift 𝑧 appears in this expression ?

in cosmology, the angular power spectrum depends on multipole noted 𝑙 (Legendre transformation) which is related to angular quantities (𝜃 and 𝜙). But the matter power spectrum is dependent of 𝑘 wave number (with Fourier transform).

I think I am wrong by saying that, in definition of 𝐶ℓ, one writes 𝐶ℓ(𝑧,𝑧′) where 𝑧 and 𝑧′ could be understood like redshift.

But here, we talk about the ##C_{\ell}## of matter fluctuations and not temperature fluctuations, do you agree ?

What do 𝑧 and 𝑧′ represent from your point of view in the expression 𝐶ℓ(𝑧,𝑧′) ?

Where is my misunderstanding ?

Thanks in advance for your help and don't hesitate to ask me for further informations if I have not been clear enough.
 
Last edited:
Space news on Phys.org
The angular power spectrum is a projection of the 3D power spectrum onto the surface of a sphere. Essentially, each ##C_\ell## is a sum over many different wavelengths that contribute to it depending upon their orientations relative to the sphere.

I believe it's a function of redshift because the power spectrum evolves over time.
 
When you say " Angular power spectrum" and "projection of the 3D power spectrum", you talk about the "Matter Angular power spectrum", that is to say, about the fluctuations of matter and not the fluctuations of temperature like in the usual CMB Angular power spectrum ?

Best regards
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
600
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K