I Relation between spectral intensity and spectral energy density

AI Thread Summary
The discussion centers on the derivation of the Planck radiation formula, specifically the relationship between spectral intensity (Iν) and spectral energy density (ρν) in laser physics. It clarifies that Iν is defined as energy per time per area per frequency, while ρν represents energy per volume per frequency. The factor of 1/4 in the equation arises from the integration of energy crossing a surface in a steady-state cavity, accounting for the isotropic nature of radiation, which means only a fraction of the energy contributes to the intensity measured. The explanation emphasizes that the energy leaving through a hole must equal the energy crossing a hemisphere surrounding the hole, justifying the inclusion of the 1/4 factor. The discussion concludes by confirming the understanding of these relationships in the context of laser physics.
IcedCoffee
Messages
20
Reaction score
4
TL;DR Summary
How is the following relation between spectral intensity and spectral energy density derived?
In Principles of Lasers by Svelto, while deriving the Planck radiation formula, equation 2.2.3 says $$I_{\nu} = \frac {c_0} {4n} \rho_\nu$$
where ##I_\nu## is the spectral intensity at some hole in the cavity wall (energy per time per area per frequency),
##c_0## is the speed of light in vacuum,
##n## is the refractive index of the medium inside the cavity,
and ##\rho_\nu## is the spectral energy density inside the cavity (energy per volume per frequency).

I understand that in the case of monochromatic wave propagating in one direction, ##I = \frac {c_0} {n} \rho##
since multiplying both sides by ##dt## would give the amount of energy passing through a given area (perpendicular to the direction of propagation),
which must originate from the volume filled with the energy density ##\rho##.

However, in this case, where does the factor of ## \frac 1 4## come from?
 
Physics news on Phys.org
Here's a picture:
1616499347556.png


Since the entire cavity is in a steady-state, the energy leaving through the circular hole of radius ##\delta r## per unit time must be equal to the energy crossing the hemisphere ##S_2## per unit time. (I guess we are also saying that the medium does not exist between ##S_2## and the hole?) Now, in time ##dt## such energy must come from the shaded area. Since radiation inside the cavity is not directional like plane wave, only a fraction of energy inside the shaded area will cross the surface ##S_2##.

In such integration, how do I justify the factor 1/4 ?
 
Last edited:
Thread 'Question about pressure of a liquid'
I am looking at pressure in liquids and I am testing my idea. The vertical tube is 100m, the contraption is filled with water. The vertical tube is very thin(maybe 1mm^2 cross section). The area of the base is ~100m^2. Will he top half be launched in the air if suddenly it cracked?- assuming its light enough. I want to test my idea that if I had a thin long ruber tube that I lifted up, then the pressure at "red lines" will be high and that the $force = pressure * area$ would be massive...
I feel it should be solvable we just need to find a perfect pattern, and there will be a general pattern since the forces acting are based on a single function, so..... you can't actually say it is unsolvable right? Cause imaging 3 bodies actually existed somwhere in this universe then nature isn't gonna wait till we predict it! And yea I have checked in many places that tiny changes cause large changes so it becomes chaos........ but still I just can't accept that it is impossible to solve...
Back
Top