Yes, basically. That is the easiest way to test for linear dependence, but I don't think it is the most intuitive definition. I think of linear dependence as a redundancy - a set of vectors is linear dependent if at least one of them can be expressed as a linear combination of others.
This is related to the span as follows. The span of (A, B, C) is the set of all linear combinations of A, B, and C. Now, if it happens that C = 2A+B (or something), then span (A, B, C) = span (A, B), because C is "redundant" in that it is a linear combination of A and B, and so it is in the span(A,B), and thus so are any linear combinations involving it.
This is important in seeing if a set spans a vector space as follows. If a vector space has "dimension" 3, it means 3 linearly independent vectors are required to generate it. But, if these three vectors were not linearly independent, then at least one of them is redundant, and so this would be equal to a span of fewer than 3 linearly independent vectors, so it could not generate that particular vector space.
For example, the complex plane can be thought of a vector space over the reals. It is also two dimensional, and 1, i spans the complex, because any complex number is a linear combination of 1 and i. However, it is easy to see that 1, 2 does not span the complex, and it is because 1 and 2 are linearly dependent.