TFM
- 1,016
- 0
Lets see where I went wrong:
\beta( \frac{7.135*10^{14}}{(6.690*10^{14})\gamma} - 1)) = -\beta(\frac{ 4.282*10^{14}}{(6.690*10^{14})\gamma} - 1)
\gamma = \sqrt{\frac{1}{1 - \beta^2}}
So:
\beta( \frac{7.135*10^{14}}{(6.690*10^{14})(\sqrt{\frac{1}{1 - \beta^2}})} - 1)) = -\beta(\frac{ 4.282*10^{14}}{(6.690*10^{14})(\sqrt{\frac{1}{1 - \beta^2}})} - 1)
Also, can't Gamma be expressed as:
\gamma = \frac{1}{\sqrt{1 - \beta^2}}
??
TFM
\beta( \frac{7.135*10^{14}}{(6.690*10^{14})\gamma} - 1)) = -\beta(\frac{ 4.282*10^{14}}{(6.690*10^{14})\gamma} - 1)
\gamma = \sqrt{\frac{1}{1 - \beta^2}}
So:
\beta( \frac{7.135*10^{14}}{(6.690*10^{14})(\sqrt{\frac{1}{1 - \beta^2}})} - 1)) = -\beta(\frac{ 4.282*10^{14}}{(6.690*10^{14})(\sqrt{\frac{1}{1 - \beta^2}})} - 1)
Also, can't Gamma be expressed as:
\gamma = \frac{1}{\sqrt{1 - \beta^2}}
??
TFM
