A Renormalized vertex functions in terms of bare ones

Siupa
Messages
30
Reaction score
5
Let ##\Gamma[\varphi] = \Gamma_0[\sqrt{Z}\varphi ] = \Gamma_0[\varphi_0]## be the generating functional for proper vertex functions for a massless ##\phi##-##4## theory. The ##0## subscripts refer to bare quantities, while the quantities without are renormalized. Then
$$\tilde{\Gamma}^{(n)}(p_i, \mu, \lambda) = Z^{\frac{n}{2}}\left( \tfrac{\Lambda}{\mu}, \lambda\right) \tilde{\Gamma}_0^{(n)}(p_i, \Lambda, \lambda_0)$$
Where the ##\tilde{\Gamma}^{(n)}## are the ##n##-point proper vertex functions in Fourier space (bare and renormalized), ##\Lambda## is the Pauli-Villars cutoff, ##\mu## an arbitrary scale, ##p_i## external momenta, ##\lambda## the ##\phi##-##4## couplings (bare and renormalized). How does one show this?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top