LagrangeEuler
- 711
- 22
I am confused. Look for instance cyclic ##C_2## group representation where
D(e)=<br /> \begin{bmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{bmatrix}
and
D(g)=<br /> \begin{bmatrix}<br /> 0 & 1\\<br /> 1 & 0<br /> \end{bmatrix}
and let's take invertible matrix
A=<br /> \begin{bmatrix}<br /> 1 & 2\\<br /> 3 & 4<br /> \end{bmatrix}.
Then
A^{-1}=<br /> \frac{1}{2}\begin{bmatrix}<br /> -4 & 2\\<br /> 3 & -1<br /> \end{bmatrix}
Then
\tilde{D}(g)=A^{-1}\cdot D(g) \cdot A=<br /> \frac{1}{2}\begin{bmatrix}<br /> -4 & 2\\<br /> 3 & -1<br /> \end{bmatrix} \cdot <br /> \begin{bmatrix}<br /> 0 & 1\\<br /> 1 & 0<br /> \end{bmatrix} \cdot <br /> \begin{bmatrix}<br /> 1 & 2\\<br /> 3 & 4<br /> \end{bmatrix}=<br /> \begin{bmatrix}<br /> -5 & -6\\<br /> 5 & 5<br /> \end{bmatrix}<br />
end that is not second order element, i.e. ##\tilde{D}(g)\cdot \tilde{D}(g)## is not equal to ##I##. Why is that the case if with this transform one should get equivalent representation of group ##C_2##?
D(e)=<br /> \begin{bmatrix}<br /> 1 & 0\\<br /> 0 & 1<br /> \end{bmatrix}
and
D(g)=<br /> \begin{bmatrix}<br /> 0 & 1\\<br /> 1 & 0<br /> \end{bmatrix}
and let's take invertible matrix
A=<br /> \begin{bmatrix}<br /> 1 & 2\\<br /> 3 & 4<br /> \end{bmatrix}.
Then
A^{-1}=<br /> \frac{1}{2}\begin{bmatrix}<br /> -4 & 2\\<br /> 3 & -1<br /> \end{bmatrix}
Then
\tilde{D}(g)=A^{-1}\cdot D(g) \cdot A=<br /> \frac{1}{2}\begin{bmatrix}<br /> -4 & 2\\<br /> 3 & -1<br /> \end{bmatrix} \cdot <br /> \begin{bmatrix}<br /> 0 & 1\\<br /> 1 & 0<br /> \end{bmatrix} \cdot <br /> \begin{bmatrix}<br /> 1 & 2\\<br /> 3 & 4<br /> \end{bmatrix}=<br /> \begin{bmatrix}<br /> -5 & -6\\<br /> 5 & 5<br /> \end{bmatrix}<br />
end that is not second order element, i.e. ##\tilde{D}(g)\cdot \tilde{D}(g)## is not equal to ##I##. Why is that the case if with this transform one should get equivalent representation of group ##C_2##?