DrStupid
- 2,167
- 502
Just to finish my kinetic approach:
In addition to my stoichiometric equations above there is also this one:
<br /> \left[ A \right] - \left[ B \right] + \left[ E \right] = \left[ A \right]_0 - \left[ B \right]_0 + \left[ E \right]_0 <br />
The two required equations for the remaining components A an B result from the condition for the equilibrium:
<br /> k_1 \cdot \left[ A \right] \cdot \left[ B \right] = k_2 \cdot \left[ C \right] \cdot \left[ E \right] = k_3 \cdot \left[ D \right] \cdot \left[ F \right]<br />
this leads to
<br /> \left[ B \right] = \frac{{\left( {\left[ A \right]_0 + \left[ C \right]_0 - \left[ A \right]} \right) \cdot \left( {\left[ A \right]_0 - \left[ B \right]_0 + \left[ E \right]_0 - \left[ A \right]} \right)}}{{\left[ A \right] \cdot \left( {1 + \frac{{k_1 }}{{k_2 }}} \right) - \left[ A \right]_0 - \left[ C \right]_0 }}<br />
Now there is only one concentration left but unfortunately I can not solve the corresponding equation. Thus a numeric simulation seems to be the easiest way to get the equilibrium composition from kinetic parameters.
In addition to my stoichiometric equations above there is also this one:
<br /> \left[ A \right] - \left[ B \right] + \left[ E \right] = \left[ A \right]_0 - \left[ B \right]_0 + \left[ E \right]_0 <br />
The two required equations for the remaining components A an B result from the condition for the equilibrium:
<br /> k_1 \cdot \left[ A \right] \cdot \left[ B \right] = k_2 \cdot \left[ C \right] \cdot \left[ E \right] = k_3 \cdot \left[ D \right] \cdot \left[ F \right]<br />
this leads to
<br /> \left[ B \right] = \frac{{\left( {\left[ A \right]_0 + \left[ C \right]_0 - \left[ A \right]} \right) \cdot \left( {\left[ A \right]_0 - \left[ B \right]_0 + \left[ E \right]_0 - \left[ A \right]} \right)}}{{\left[ A \right] \cdot \left( {1 + \frac{{k_1 }}{{k_2 }}} \right) - \left[ A \right]_0 - \left[ C \right]_0 }}<br />
Now there is only one concentration left but unfortunately I can not solve the corresponding equation. Thus a numeric simulation seems to be the easiest way to get the equilibrium composition from kinetic parameters.