MHB Residue Calc: $\cot^n(z)$ at $z=0$

Click For Summary
The residue of the function $\cot^{n}(z)$ at the point $z=0$ is determined to be $\sin \left( \frac{n \pi}{2}\right)$ for natural numbers $n$. This result arises from analyzing the Laurent series expansion of $\cot(z)$ around $z=0$. The behavior of $\cot(z)$ near this point contributes to the calculation of the residue. The hint provided suggests focusing on the properties of sine and the periodic nature of the cotangent function. This establishes a clear relationship between the residue and the sine function evaluated at specific multiples of $\pi$.
polygamma
Messages
227
Reaction score
0
Show that the residue of $\cot^{n}(z)$ at $z=0$ is $\sin \left( \frac{n \pi}{2}\right)$, $n \in \mathbb{N}$.
 
Mathematics news on Phys.org
Hint:

Integrate $\cot^{n} (z)$ around a rectangular contour with vertices at $- \frac{\pi}{2} - iR$, $ \frac{\pi}{2} - i R$, $\frac{\pi}{2} + iR$, and $- \frac{\pi}{2} + iR$. Then let $ R \to \infty$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K