Resultant force and centre of pressure in a tank

  • #1
Guillem_dlc
184
15
Homework Statement:
The tank in the figure contains water and a uniform pressure ##p_a## acts on its surface. We wish to determine the resultant force ##F##, and its centre of pressure ##y_c-y_G##, on a flat gate of base ##3\, \textrm{m}## and height ##1,5\, \textrm{m}##. The damper is located on a wall of the tank with an inclination of ##30## degrees with respect to the horizontal. The upper base of the damper is located at ##3\, \textrm{m}## depth. Consider the following cases: a) ##p_a=p_{\textrm{atm}}## and b) ##p_a=125\, \textrm{kPa}##.
Relevant Equations:
##I_{xx}=\iint y^2\, dA##
Figure:
5E13FCF2-1351-4777-88EC-B2DF9F5289A4.jpeg


a) CASE A ##\rightarrow p_a=101300\, \textrm{Pa}##
$$F_{\textrm{res}}?,\,\, y_c-y_{cg}=y_{cp}$$
We find ##h_{cg}\rightarrow h_{cg}=3+h##
$$h=0,75\cdot \sin (30)=0,375\, \textrm{m}\rightarrow h_{cg}=3,375\, \textrm{m}$$
$$p_{cG}=\rho_{H2O}gh_{cg}=33108,75\, \textrm{Pa}$$
We calculate ##A=1,5\cdot 3=4,5\, \textrm{m}^2##
$$\boxed{F=p_{CG}\cdot A=148989,375\, \textrm{N}}$$
$$I_{xx}=\iint y^2\, dA=\int_0^{1,5}\int_0^3 y^2\, dxdy=\int_0^{1,5}y^2\int_0^3 dxdy=3\int_0^{1,5}y^2\, dy=$$
$$=3\left[ \dfrac{y^3}{3}\right]_0^{1,5}=3,375$$
$$y_{CP}=-\dfrac{\rho_{H2O}g\sin \theta I_{xx}}{F_{CG}}=0,111$$
I don't get the ##I_{xx}## right and I don't know why? Is it calculated in this way?
$$I_{xx}=\iint y^2\, dA$$
It should give ##\dfrac{b\cdot L^3}{12}##.
 

Answers and Replies

  • #2
erobz
Gold Member
1,479
660
You are supposed to be looking for the effective force acting on the gate, and it’s applied location(the center of pressure). The gate is in static equilibrium. The moment of inertia of the gate is not going to be a factor, it is not a dynamics problem.

Isolate the gate, assume it’s being held closed. Sketch the pressure distribution acting over its interior for the different gauge pressures acting over surface ##a##. Use that to determine the effective force on the gates interior, and it’s location using the proper formulas for those quantities.
 
Last edited:
  • Like
Likes Guillem_dlc and Lnewqban
  • #3
erobz
Gold Member
1,479
660
The Second Moment of Area (Not Moment of Inertia o:) - Thanks @Lnewqban) is a factor! I'm sorry...I forgot it was in the formula for ##y_{cp}##. Anyhow, you don't have to do the integral, you have it written in the last part of the OP.
 
Last edited:
  • #5
Guillem_dlc
184
15
With the integral I have not done this in the end?
 
  • #6
erobz
Gold Member
1,479
660
For part (a) your force looks correct.

What they are asking you to find is:

$$ y_{cp} = \bar{y} + \frac{ \bar{I} }{ \bar{y} A} $$

$$ ( y_{cp} - \bar{y} ) = \frac{ \bar{I} }{ \bar{y} A} $$

$$y_{CP}=-\dfrac{\rho_{H2O}g\sin \theta I_{xx}}{F_{CG}}=0,111$$

Where does the negative sign come from, and where did it go?

That expression is not equal to ##y_{cp}## (see above).

If you are going to use the Force and the density to calculate the area of the plate ##A## (which unnecessary and introduces computational error), label it correctly as ##F##. Its not ##F_{CG}##.

I feel like you have made a mess of things trying to be overly clever with substitutions. I think its correct (other than the minus sign and the labeling), but you have not made it easy to check.
 
  • #7
erobz
Gold Member
1,479
660
You are correct, that whatever you are going to do after that should result in (for the rectangle):

$$I_{xx} = \frac{1}{12}bh^3$$
 
Last edited:
  • #8
Guillem_dlc
184
15
Where does the negative sign come from, and where did it go?
As ##y_{cp}## is a measure of the centre of gravity, I have given the result as an absolute value.

But maybe I should have left the sign to indicate where it goes.

For example, when you want to find the height of the centre of pressures then I do ##h_{cp}=h_{cg}+y_{cp}## with the sign I have been given from the formula so I know if it is higher or lower, but otherwise I put it in absolute value.
 
  • #9
erobz
Gold Member
1,479
660
The actual question you have is what you've done incorrectly calculating the second moment of area of a rectangular plate?

For starters the limits of integration are wrong. Put coordinate system through the centroid of the area. What are the limits of integration with respect to those axes?
 
Last edited:
  • #10
erobz
Gold Member
1,479
660
As ##y_{cp}## is a measure of the centre of gravity, I have given the result as an absolute value.
##y_{cp}## is the center of pressure, not the center of gravity. The depths are measured as positive downward from the surface. ##( y_{cp} - \bar{y}) > 0## for these types of problems. No need for absolute values.
 
  • Like
Likes Guillem_dlc
  • #11
Guillem_dlc
184
15
The actual question you have is what you've done incorrectly calculating the second moment of area of a rectangular plate?

For starters the limits of integration are wrong. Put coordinate system through the centroid of the area. What are the limits of integration with respect to those axes?
##-0,75## to ##0,75## and ##-1,5## to ##1,5##?
 
  • #12
erobz
Gold Member
1,479
660
##-0,75## to ##0,75## and ##-1,5## to ##1,5##?
ok, just leave it in parameters ##h## and ##b## for now. What are the limits for the integration w.r.t. ##y## in terms of ##h##, and ##x## in terms of ##b## respectively?
 
  • #13
Guillem_dlc
184
15
ok, just leave it in parameters ##h## and ##b## for now. What are the limits for the integration w.r.t. ##y## in terms of ##h##, and ##x## in terms of ##b## respectively?
##-h/2## to ##h/2## and ##-b/2## to ##b/2##
 
  • #14
erobz
Gold Member
1,479
660
Good. You can do that integration or (highly recommended), using the arguments of symmetry make life easier.

$$ I_{xx} = \int_{-b/2}^{b/2} \int_{-h/2}^{h/2} y^2 dy \, dx = 2 \int_{0}^{b/2} \int_{0}^{h/2} y^2 dy \, dx $$
 
  • Like
Likes Guillem_dlc
  • #15
Guillem_dlc
184
15
Good. You can do that integration or (highly recommended), using the arguments of symmetry make life easier.

$$ I_{xx} = \int_{-b/2}^{b/2} \int_{-h/2}^{h/2} y^2 dy \, dx = 2 \int_{0}^{b/2} \int_{0}^{h/2} y^2 dy \, dx $$
So if I have a circle I will have to switch to polars, right?
 
  • #16
erobz
Gold Member
1,479
660
So if I have a circle I will have to switch to polars, right?
I don't know that you have to... probably would be a good idea.
 
  • #17
haruspex
Science Advisor
Homework Helper
Insights Author
Gold Member
2022 Award
39,191
8,502
So if I have a circle I will have to switch to polars, right?

The problem is equivalent to finding the x coordinate of the mass centre of a vertical cylinder with a horizontal base but with a top sloped at some angle.
##\int_{-r}^r(a x+b)\sqrt{r^2-x^2}x.dx##
##\int_{-\pi}^\pi(ar\cos(\theta)+b)r\sin(\theta)r\cos(\theta).(-r)\sin(\theta)d\theta##
 
  • Like
Likes Guillem_dlc

Suggested for: Resultant force and centre of pressure in a tank

Replies
10
Views
216
Replies
2
Views
315
Replies
1
Views
791
Replies
1
Views
430
Replies
5
Views
318
Replies
9
Views
443
  • Last Post
Replies
8
Views
702
Top