MHB Rewrite in exponential form: Log(6) 1294 = 4

  • Thread starter Thread starter Vi Nguyen
  • Start date Start date
  • Tags Tags
    Exponential Form
Click For Summary
The discussion focuses on rewriting logarithmic equations in exponential form. The equation Log(6) 1294 = 4 is confirmed, with a suggestion that it might be Log(6) 1296 instead. The relationship between logarithms and exponents is emphasized, specifically that log_b(a) = c implies b^c = a. Additionally, participants evaluate Log(4) 64, noting that 4^3 equals 64, and Log(16) 4, recognizing that 16 raised to the power of 1/2 equals 4. The conversation highlights the fundamental properties of logarithms and their exponential counterparts.
Vi Nguyen
Messages
13
Reaction score
0
Rewrite in exponential form:
Log(6) 1294 = 4
Log(w) v = t

Ln(1/4) = x
Evaluate

Log(4) 64 = ?

Log(16) 4 = ?
 
Mathematics news on Phys.org
Vi Nguyen said:
Rewrite in exponential form:
Log(6) 1294 = 4

sure that isn't 1296 ?Log(w) v = t

if you meant w to be the base of the logarithm ... $w^t = v$

Ln(1/4) = x

$e^x = \dfrac{1}{4}$
Evaluate

Log(4) 64 = ?

note that $4^3 = 64$

Log(16) 4 = ?

note $16^{1/2} = 4$

logarithm to exponential relationship ...

$\log_b(a) = c \implies b^c = a$
 
Thanks
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K