A Ricci tensor for Fermi normal coordinates

  • A
  • Thread starter Thread starter TimWilliams87
  • Start date Start date
TimWilliams87
Messages
7
Reaction score
0
TL;DR Summary
Can the Ricci tensor be written simply in terms of second derivatives of the metric by the relation with the Riemann tensor?
I am learning about Fermi normal coordinates for an inertial observer on a reference curve from the textbook ''Advanced general relativity'' by Eric Poisson. The metric is written as g = eta + h, where eta is the Minkowski metric and h is the spacetime curvature perturbation close to the geodesic up to order x^2. t is proper time along the geodesic.

In these coordinates, the metric can be expressed as

$$ g_{tt} = -1 -R_{tatb}(t)x^ax^b + O(x^3), $$

$$ g_{ta} = \frac{2}{3}R_{tbac}(t) + O(x^3), $$

$$ g_{ab} = \delta_{ab} - \frac{1}{3}R_{acbd}(t)x^cx^d + O(x^3), $$

where ##R_{abcd}## is the Riemann tensor. It is stated in Poisson that these are related to statements regarding second derivatives of the metric (which I assume are just spatial derivatives only of the perturbing part of the metric h).

Since the components of the Riemann tensor can be written in terms of second derivatives of the metric, can one write components of the Ricci tensor simply in terms of second derivatives of the metric? So, for example, what is the component of the Ricci tensor R_{00}?

We do have as usual the relation

$$ R_{00} = g^{ii}R_{0i0i} , $$

but this seems like it would become complicated.
 
Last edited by a moderator:
Physics news on Phys.org
@TimWilliams87 please review the PF LaTeX Guide. LaTeX formulas here are delimited by double dollar signs, for equations standing alone, or double pound signs for inline LaTeX. I have used magic moderator powers to edit your OP accordingly.
 
I started reading a National Geographic article related to the Big Bang. It starts these statements: Gazing up at the stars at night, it’s easy to imagine that space goes on forever. But cosmologists know that the universe actually has limits. First, their best models indicate that space and time had a beginning, a subatomic point called a singularity. This point of intense heat and density rapidly ballooned outward. My first reaction was that this is a layman's approximation to...
In this video I can see a person walking around lines of curvature on a sphere with an arrow strapped to his waist. His task is to keep the arrow pointed in the same direction How does he do this ? Does he use a reference point like the stars? (that only move very slowly) If that is how he keeps the arrow pointing in the same direction, is that equivalent to saying that he orients the arrow wrt the 3d space that the sphere is embedded in? So ,although one refers to intrinsic curvature...
Thread 'Dirac's integral for the energy-momentum of the gravitational field'
See Dirac's brief treatment of the energy-momentum pseudo-tensor in the attached picture. Dirac is presumably integrating eq. (31.2) over the 4D "hypercylinder" defined by ##T_1 \le x^0 \le T_2## and ##\mathbf{|x|} \le R##, where ##R## is sufficiently large to include all the matter-energy fields in the system. Then \begin{align} 0 &= \int_V \left[ ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g}\, \right]_{,\nu} d^4 x = \int_{\partial V} ({t_\mu}^\nu + T_\mu^\nu)\sqrt{-g} \, dS_\nu \nonumber\\ &= \left(...
Back
Top