Ricci tensor from this action

  • Context: Undergrad 
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    action Tensor
Click For Summary
SUMMARY

The forum discussion centers on deriving the Ricci tensor from a scalar-tensor theory of gravity represented by the action $$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$. The participants analyze variations of the action with respect to the metric and the scalar field, ultimately concluding that the correct expression for the Ricci tensor is $$R_{ab} = \nabla_a \nabla_b \Phi$$. The discussion highlights the importance of using distinct indices when performing variations to avoid errors in calculations.

PREREQUISITES
  • Understanding of scalar-tensor theories of gravity
  • Familiarity with the Einstein-Hilbert action
  • Knowledge of differential geometry and tensor calculus
  • Proficiency in variational principles in physics
NEXT STEPS
  • Study the Einstein-Hilbert action and its implications in general relativity
  • Learn about variations in the context of field theories
  • Explore the properties of the Ricci tensor and its role in Einstein's field equations
  • Investigate scalar-tensor theories and their applications in modern cosmology
USEFUL FOR

Researchers in theoretical physics, particularly those focused on general relativity and cosmology, as well as graduate students studying advanced topics in gravitational theories.

ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Here is an action for a theory which couples gravity to a field in this way:$$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$I determine\begin{align*}
\frac{\partial L}{\partial \phi} &= \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b}) \\
\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)} &= 2\sqrt{-g} e^{\Phi} g^{ab} (\Phi_{;a} \Phi_{;b} + \Phi_{;ba})
\end{align*}giving ##R = g^{ab} (\Phi_{;a} \Phi_{;b} + 2\Phi_{;ba})##. Now vary the action with respect to the metric,\begin{align*}
\frac{\delta S}{\delta g^{ab}} &= -\frac{1}{2}\sqrt{-g} e^{\Phi} g_{ab} (R + g^{cd} \Phi_{;c} \Phi_{;d}) + \sqrt{-g} e^{\Phi}(\frac{\delta R}{\delta g^{ab}} + \Phi_{;a} \Phi_{;b}) \end{align*}Put ##\delta R_{ab} / \delta g^{ab} = R_{ab}## and insert the previous equation for ##R##. Zero the variation and cancel the common factor ##\sqrt{-g} e^{\Phi}##,$$0 = -g_{ab} g^{cd} (\Phi_{;c} \Phi_{;d} + \Phi_{;dc}) + R_{ab} + \Phi_{;a} \Phi_{;b}$$This should give ##R_{ab} = \Phi_{;ba}## but it doesn't work out that way because the indices are mangled. Can somebody see the error?
 
  • Like
Likes   Reactions: jbergman
Physics news on Phys.org
ergospherical said:
Here is an action for a theory
Is there a particular source from which you got this? It looks like it might be the general action for one kind of scalar-tensor theory of gravity.
 
It's just a very old exam. I presumed it was just something arbitrary the examiner thought up, but may have some application.
 
Not sure if you eventually managed to figure it out but your error is you're overloading indices when taking the variations. Generally speaking, it's better to give separate indices for the field you're taking variations with respect to, compared to the indices in the quantity you're computing variations of.

We have $$\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \Phi,$$ hence $$\nabla_c\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \nabla_c \Phi.$$ Thus $$R = 2\nabla^a \nabla_a \Phi - \nabla^a \Phi \nabla_a \Phi.$$

We can now compute ##\frac{\delta S}{\delta g^{ab}}##. The general expression you calculated is indeed correct: $$R_{cd} = \frac{\delta S}{\delta g^{cd}} = \sqrt{-g}e^{\Phi}\left(\frac{\delta R}{\delta g^{cd}} - \frac{1}{2}g_{cd}R + \nabla_c \Phi \nabla_d \Phi - \frac{1}{2}g_{cd}\nabla^e \Phi \nabla_e \Phi\right).$$

We have $$\frac{\delta R}{\delta g^{cd}} = 2\nabla_c \nabla_d \Phi - \nabla_c \Phi \nabla_d \Phi.$$ Plugging in for ##R## we find the desired result $$R_{ab} = \nabla_a \nabla_b \Phi.$$

Hope that helps!
 
  • Like
Likes   Reactions: ergospherical
Yeah, it was a mistake in ##\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)}##. Hard for me to figure out why it happened. :)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
829
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
911
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K