I Ricci tensor from this action

  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    action Tensor
Click For Summary
The discussion focuses on deriving the Ricci tensor from a specific action that couples gravity to a scalar field. The action is given as S = ∫ d^4x √(-g) e^Φ (R + g^ab Φ_;a Φ_;b). The participants identify an error in the variation process, specifically related to the overloading of indices when taking variations, which leads to incorrect results. The correct expression for the Ricci tensor is derived as R_ab = ∇_a ∇_b Φ, clarifying the relationship between the scalar field and curvature. The conversation emphasizes the importance of careful index management in tensor calculus.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
Here is an action for a theory which couples gravity to a field in this way:$$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$I determine\begin{align*}
\frac{\partial L}{\partial \phi} &= \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b}) \\
\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)} &= 2\sqrt{-g} e^{\Phi} g^{ab} (\Phi_{;a} \Phi_{;b} + \Phi_{;ba})
\end{align*}giving ##R = g^{ab} (\Phi_{;a} \Phi_{;b} + 2\Phi_{;ba})##. Now vary the action with respect to the metric,\begin{align*}
\frac{\delta S}{\delta g^{ab}} &= -\frac{1}{2}\sqrt{-g} e^{\Phi} g_{ab} (R + g^{cd} \Phi_{;c} \Phi_{;d}) + \sqrt{-g} e^{\Phi}(\frac{\delta R}{\delta g^{ab}} + \Phi_{;a} \Phi_{;b}) \end{align*}Put ##\delta R_{ab} / \delta g^{ab} = R_{ab}## and insert the previous equation for ##R##. Zero the variation and cancel the common factor ##\sqrt{-g} e^{\Phi}##,$$0 = -g_{ab} g^{cd} (\Phi_{;c} \Phi_{;d} + \Phi_{;dc}) + R_{ab} + \Phi_{;a} \Phi_{;b}$$This should give ##R_{ab} = \Phi_{;ba}## but it doesn't work out that way because the indices are mangled. Can somebody see the error?
 
Physics news on Phys.org
ergospherical said:
Here is an action for a theory
Is there a particular source from which you got this? It looks like it might be the general action for one kind of scalar-tensor theory of gravity.
 
It's just a very old exam. I presumed it was just something arbitrary the examiner thought up, but may have some application.
 
Not sure if you eventually managed to figure it out but your error is you're overloading indices when taking the variations. Generally speaking, it's better to give separate indices for the field you're taking variations with respect to, compared to the indices in the quantity you're computing variations of.

We have $$\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \Phi,$$ hence $$\nabla_c\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \nabla_c \Phi.$$ Thus $$R = 2\nabla^a \nabla_a \Phi - \nabla^a \Phi \nabla_a \Phi.$$

We can now compute ##\frac{\delta S}{\delta g^{ab}}##. The general expression you calculated is indeed correct: $$R_{cd} = \frac{\delta S}{\delta g^{cd}} = \sqrt{-g}e^{\Phi}\left(\frac{\delta R}{\delta g^{cd}} - \frac{1}{2}g_{cd}R + \nabla_c \Phi \nabla_d \Phi - \frac{1}{2}g_{cd}\nabla^e \Phi \nabla_e \Phi\right).$$

We have $$\frac{\delta R}{\delta g^{cd}} = 2\nabla_c \nabla_d \Phi - \nabla_c \Phi \nabla_d \Phi.$$ Plugging in for ##R## we find the desired result $$R_{ab} = \nabla_a \nabla_b \Phi.$$

Hope that helps!
 
  • Like
Likes ergospherical
Yeah, it was a mistake in ##\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)}##. Hard for me to figure out why it happened. :)
 
Moderator's note: Spin-off from another thread due to topic change. In the second link referenced, there is a claim about a physical interpretation of frame field. Consider a family of observers whose worldlines fill a region of spacetime. Each of them carries a clock and a set of mutually orthogonal rulers. Each observer points in the (timelike) direction defined by its worldline's tangent at any given event along it. What about the rulers each of them carries ? My interpretation: each...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
771
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
839
  • · Replies 1 ·
Replies
1
Views
921
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K