I Ricci tensor from this action

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    action Tensor
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here is an action for a theory which couples gravity to a field in this way:$$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$I determine\begin{align*}
\frac{\partial L}{\partial \phi} &= \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b}) \\
\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)} &= 2\sqrt{-g} e^{\Phi} g^{ab} (\Phi_{;a} \Phi_{;b} + \Phi_{;ba})
\end{align*}giving ##R = g^{ab} (\Phi_{;a} \Phi_{;b} + 2\Phi_{;ba})##. Now vary the action with respect to the metric,\begin{align*}
\frac{\delta S}{\delta g^{ab}} &= -\frac{1}{2}\sqrt{-g} e^{\Phi} g_{ab} (R + g^{cd} \Phi_{;c} \Phi_{;d}) + \sqrt{-g} e^{\Phi}(\frac{\delta R}{\delta g^{ab}} + \Phi_{;a} \Phi_{;b}) \end{align*}Put ##\delta R_{ab} / \delta g^{ab} = R_{ab}## and insert the previous equation for ##R##. Zero the variation and cancel the common factor ##\sqrt{-g} e^{\Phi}##,$$0 = -g_{ab} g^{cd} (\Phi_{;c} \Phi_{;d} + \Phi_{;dc}) + R_{ab} + \Phi_{;a} \Phi_{;b}$$This should give ##R_{ab} = \Phi_{;ba}## but it doesn't work out that way because the indices are mangled. Can somebody see the error?
 
Physics news on Phys.org
ergospherical said:
Here is an action for a theory
Is there a particular source from which you got this? It looks like it might be the general action for one kind of scalar-tensor theory of gravity.
 
It's just a very old exam. I presumed it was just something arbitrary the examiner thought up, but may have some application.
 
Not sure if you eventually managed to figure it out but your error is you're overloading indices when taking the variations. Generally speaking, it's better to give separate indices for the field you're taking variations with respect to, compared to the indices in the quantity you're computing variations of.

We have $$\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \Phi,$$ hence $$\nabla_c\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \nabla_c \Phi.$$ Thus $$R = 2\nabla^a \nabla_a \Phi - \nabla^a \Phi \nabla_a \Phi.$$

We can now compute ##\frac{\delta S}{\delta g^{ab}}##. The general expression you calculated is indeed correct: $$R_{cd} = \frac{\delta S}{\delta g^{cd}} = \sqrt{-g}e^{\Phi}\left(\frac{\delta R}{\delta g^{cd}} - \frac{1}{2}g_{cd}R + \nabla_c \Phi \nabla_d \Phi - \frac{1}{2}g_{cd}\nabla^e \Phi \nabla_e \Phi\right).$$

We have $$\frac{\delta R}{\delta g^{cd}} = 2\nabla_c \nabla_d \Phi - \nabla_c \Phi \nabla_d \Phi.$$ Plugging in for ##R## we find the desired result $$R_{ab} = \nabla_a \nabla_b \Phi.$$

Hope that helps!
 
  • Like
Likes ergospherical
Yeah, it was a mistake in ##\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)}##. Hard for me to figure out why it happened. :)
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top