I Ricci tensor from this action

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    action Tensor
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,097
Reaction score
1,384
Here is an action for a theory which couples gravity to a field in this way:$$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$I determine\begin{align*}
\frac{\partial L}{\partial \phi} &= \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b}) \\
\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)} &= 2\sqrt{-g} e^{\Phi} g^{ab} (\Phi_{;a} \Phi_{;b} + \Phi_{;ba})
\end{align*}giving ##R = g^{ab} (\Phi_{;a} \Phi_{;b} + 2\Phi_{;ba})##. Now vary the action with respect to the metric,\begin{align*}
\frac{\delta S}{\delta g^{ab}} &= -\frac{1}{2}\sqrt{-g} e^{\Phi} g_{ab} (R + g^{cd} \Phi_{;c} \Phi_{;d}) + \sqrt{-g} e^{\Phi}(\frac{\delta R}{\delta g^{ab}} + \Phi_{;a} \Phi_{;b}) \end{align*}Put ##\delta R_{ab} / \delta g^{ab} = R_{ab}## and insert the previous equation for ##R##. Zero the variation and cancel the common factor ##\sqrt{-g} e^{\Phi}##,$$0 = -g_{ab} g^{cd} (\Phi_{;c} \Phi_{;d} + \Phi_{;dc}) + R_{ab} + \Phi_{;a} \Phi_{;b}$$This should give ##R_{ab} = \Phi_{;ba}## but it doesn't work out that way because the indices are mangled. Can somebody see the error?
 
Physics news on Phys.org
ergospherical said:
Here is an action for a theory
Is there a particular source from which you got this? It looks like it might be the general action for one kind of scalar-tensor theory of gravity.
 
It's just a very old exam. I presumed it was just something arbitrary the examiner thought up, but may have some application.
 
Not sure if you eventually managed to figure it out but your error is you're overloading indices when taking the variations. Generally speaking, it's better to give separate indices for the field you're taking variations with respect to, compared to the indices in the quantity you're computing variations of.

We have $$\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \Phi,$$ hence $$\nabla_c\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \nabla_c \Phi.$$ Thus $$R = 2\nabla^a \nabla_a \Phi - \nabla^a \Phi \nabla_a \Phi.$$

We can now compute ##\frac{\delta S}{\delta g^{ab}}##. The general expression you calculated is indeed correct: $$R_{cd} = \frac{\delta S}{\delta g^{cd}} = \sqrt{-g}e^{\Phi}\left(\frac{\delta R}{\delta g^{cd}} - \frac{1}{2}g_{cd}R + \nabla_c \Phi \nabla_d \Phi - \frac{1}{2}g_{cd}\nabla^e \Phi \nabla_e \Phi\right).$$

We have $$\frac{\delta R}{\delta g^{cd}} = 2\nabla_c \nabla_d \Phi - \nabla_c \Phi \nabla_d \Phi.$$ Plugging in for ##R## we find the desired result $$R_{ab} = \nabla_a \nabla_b \Phi.$$

Hope that helps!
 
  • Like
Likes ergospherical
Yeah, it was a mistake in ##\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)}##. Hard for me to figure out why it happened. :)
 
In Philippe G. Ciarlet's book 'An introduction to differential geometry', He gives the integrability conditions of the differential equations like this: $$ \partial_{i} F_{lj}=L^p_{ij} F_{lp},\,\,\,F_{ij}(x_0)=F^0_{ij}. $$ The integrability conditions for the existence of a global solution ##F_{lj}## is: $$ R^i_{jkl}\equiv\partial_k L^i_{jl}-\partial_l L^i_{jk}+L^h_{jl} L^i_{hk}-L^h_{jk} L^i_{hl}=0 $$ Then from the equation: $$\nabla_b e_a= \Gamma^c_{ab} e_c$$ Using cartesian basis ## e_I...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. The Relativator was sold by (as printed) Atomic Laboratories, Inc. 3086 Claremont Ave, Berkeley 5, California , which seems to be a division of Cenco Instruments (Central Scientific Company)... Source: https://www.physicsforums.com/insights/relativator-circular-slide-rule-simulated-with-desmos/ by @robphy
Abstract The gravitational-wave signal GW250114 was observed by the two LIGO detectors with a network matched-filter signal-to-noise ratio of 80. The signal was emitted by the coalescence of two black holes with near-equal masses ## m_1=33.6_{-0.8}^{+1.2} M_{⊙} ## and ## m_2=32.2_{-1. 3}^{+0.8} M_{⊙}##, and small spins ##\chi_{1,2}\leq 0.26 ## (90% credibility) and negligible eccentricity ##e⁢\leq 0.03.## Postmerger data excluding the peak region are consistent with the dominant quadrupolar...
Back
Top