I Ricci tensor from this action

  • I
  • Thread starter Thread starter ergospherical
  • Start date Start date
  • Tags Tags
    action Tensor
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,098
Reaction score
1,385
Here is an action for a theory which couples gravity to a field in this way:$$S = \int d^4 x \ \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b})$$I determine\begin{align*}
\frac{\partial L}{\partial \phi} &= \sqrt{-g} e^{\Phi} (R + g^{ab} \Phi_{;a} \Phi_{;b}) \\
\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)} &= 2\sqrt{-g} e^{\Phi} g^{ab} (\Phi_{;a} \Phi_{;b} + \Phi_{;ba})
\end{align*}giving ##R = g^{ab} (\Phi_{;a} \Phi_{;b} + 2\Phi_{;ba})##. Now vary the action with respect to the metric,\begin{align*}
\frac{\delta S}{\delta g^{ab}} &= -\frac{1}{2}\sqrt{-g} e^{\Phi} g_{ab} (R + g^{cd} \Phi_{;c} \Phi_{;d}) + \sqrt{-g} e^{\Phi}(\frac{\delta R}{\delta g^{ab}} + \Phi_{;a} \Phi_{;b}) \end{align*}Put ##\delta R_{ab} / \delta g^{ab} = R_{ab}## and insert the previous equation for ##R##. Zero the variation and cancel the common factor ##\sqrt{-g} e^{\Phi}##,$$0 = -g_{ab} g^{cd} (\Phi_{;c} \Phi_{;d} + \Phi_{;dc}) + R_{ab} + \Phi_{;a} \Phi_{;b}$$This should give ##R_{ab} = \Phi_{;ba}## but it doesn't work out that way because the indices are mangled. Can somebody see the error?
 
Physics news on Phys.org
ergospherical said:
Here is an action for a theory
Is there a particular source from which you got this? It looks like it might be the general action for one kind of scalar-tensor theory of gravity.
 
It's just a very old exam. I presumed it was just something arbitrary the examiner thought up, but may have some application.
 
Not sure if you eventually managed to figure it out but your error is you're overloading indices when taking the variations. Generally speaking, it's better to give separate indices for the field you're taking variations with respect to, compared to the indices in the quantity you're computing variations of.

We have $$\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \Phi,$$ hence $$\nabla_c\frac{\delta S}{\delta \nabla_c \Phi} = 2\sqrt{-g}e^{\Phi}\nabla^c \nabla_c \Phi.$$ Thus $$R = 2\nabla^a \nabla_a \Phi - \nabla^a \Phi \nabla_a \Phi.$$

We can now compute ##\frac{\delta S}{\delta g^{ab}}##. The general expression you calculated is indeed correct: $$R_{cd} = \frac{\delta S}{\delta g^{cd}} = \sqrt{-g}e^{\Phi}\left(\frac{\delta R}{\delta g^{cd}} - \frac{1}{2}g_{cd}R + \nabla_c \Phi \nabla_d \Phi - \frac{1}{2}g_{cd}\nabla^e \Phi \nabla_e \Phi\right).$$

We have $$\frac{\delta R}{\delta g^{cd}} = 2\nabla_c \nabla_d \Phi - \nabla_c \Phi \nabla_d \Phi.$$ Plugging in for ##R## we find the desired result $$R_{ab} = \nabla_a \nabla_b \Phi.$$

Hope that helps!
 
  • Like
Likes ergospherical
Yeah, it was a mistake in ##\nabla_a \frac{\partial L}{\partial(\nabla_a \Phi)}##. Hard for me to figure out why it happened. :)
 
I asked a question here, probably over 15 years ago on entanglement and I appreciated the thoughtful answers I received back then. The intervening years haven't made me any more knowledgeable in physics, so forgive my naïveté ! If a have a piece of paper in an area of high gravity, lets say near a black hole, and I draw a triangle on this paper and 'measure' the angles of the triangle, will they add to 180 degrees? How about if I'm looking at this paper outside of the (reasonable)...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top