A Rich "isotropic tensor" concept

  • A
  • Thread starter Thread starter apostolosdt
  • Start date Start date
  • Tags Tags
    Concept Tensor
AI Thread Summary
Isotropic tensors maintain their components across all coordinate systems transformed under rotation, with only rank-0, rank-2, and rank-3 tensors existing—specifically, a scalar, the Kronecker delta, and the permutation symbol. There are no rank-1 isotropic tensors, or vectors. The enumeration of isotropic tensors leads to a sequence known as Motzkin sum numbers, which follow a specific recurrence relation. A generating function for these numbers produces a polynomial series that highlights their mathematical beauty. The discussion emphasizes the intricate relationship between mathematics and physics, suggesting that the exploration of such concepts can deepen appreciation for the mathematical framework underlying nature.
apostolosdt
Messages
178
Reaction score
204
My field is physics and I'm very cautious about the "math describing the Nature" attitude, but I can't help admiring the deep richness of mathematics!

The other day, I was checking about isotropic tensors. An isotropic tensor keeps its components in all coordinated systems transformed under rotation. Then, unexpectedly, I came across some beautiful remarks on the topic. Here are some of them.

How many isotropic tensors exist? There are only single rank-0, rank-2, and rank-3 tensors, respectively, a scalar, the Kronecker ##\delta^{ij}##, and the permutation symbol ##\epsilon_{ijk}##. There are no rank-1 isotropic tensors, that is, vectors.

Now, if one attempts to enumerate all the isotropic tensors, starting with the ones above and going to higher ranks, one gets the sequence:
$$1, 0, 1, 1, 3, 6, 15, 36, 91, 232, {\rm etc.} $$
These numbers are called ##{\it Motzkin\,sum\,numbers}## and obey a recurrence relation:
$$a_n = {n-1\over n+1}\left(2a_{n-1} + 3a_{n-2}\right)$$
with ##a(0) =1, a(1) = 0##.

There is also a generating function:
$$G(x) = {1\over 2x}\left(1 -\sqrt{1-3x\over 1+x}\right)$$
that produces the following polynomial series:
$$\sum_{n=0}^\infty a_n\, x^n = 1 + x^2 + x^3 + 3x^4 + 6x^5 + 15x^6 + \cdots$$
No need to draw your attention to the coefficients of the powers! Plain beautiful!
 
Last edited:
Mathematics news on Phys.org
To answer your question of "math describing nature" debate, you might enjoy this documentary featured on NOVA some years ago:

 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top