A Rich "isotropic tensor" concept

  • A
  • Thread starter Thread starter apostolosdt
  • Start date Start date
  • Tags Tags
    Concept Tensor
apostolosdt
Messages
178
Reaction score
204
My field is physics and I'm very cautious about the "math describing the Nature" attitude, but I can't help admiring the deep richness of mathematics!

The other day, I was checking about isotropic tensors. An isotropic tensor keeps its components in all coordinated systems transformed under rotation. Then, unexpectedly, I came across some beautiful remarks on the topic. Here are some of them.

How many isotropic tensors exist? There are only single rank-0, rank-2, and rank-3 tensors, respectively, a scalar, the Kronecker ##\delta^{ij}##, and the permutation symbol ##\epsilon_{ijk}##. There are no rank-1 isotropic tensors, that is, vectors.

Now, if one attempts to enumerate all the isotropic tensors, starting with the ones above and going to higher ranks, one gets the sequence:
$$1, 0, 1, 1, 3, 6, 15, 36, 91, 232, {\rm etc.} $$
These numbers are called ##{\it Motzkin\,sum\,numbers}## and obey a recurrence relation:
$$a_n = {n-1\over n+1}\left(2a_{n-1} + 3a_{n-2}\right)$$
with ##a(0) =1, a(1) = 0##.

There is also a generating function:
$$G(x) = {1\over 2x}\left(1 -\sqrt{1-3x\over 1+x}\right)$$
that produces the following polynomial series:
$$\sum_{n=0}^\infty a_n\, x^n = 1 + x^2 + x^3 + 3x^4 + 6x^5 + 15x^6 + \cdots$$
No need to draw your attention to the coefficients of the powers! Plain beautiful!
 
Last edited:
Mathematics news on Phys.org
To answer your question of "math describing nature" debate, you might enjoy this documentary featured on NOVA some years ago:

 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top