A Rich "isotropic tensor" concept

  • Thread starter Thread starter apostolosdt
  • Start date Start date
  • Tags Tags
    Concept Tensor
Click For Summary
Isotropic tensors maintain their components across all coordinate systems transformed under rotation, with only rank-0, rank-2, and rank-3 tensors existing—specifically, a scalar, the Kronecker delta, and the permutation symbol. There are no rank-1 isotropic tensors, or vectors. The enumeration of isotropic tensors leads to a sequence known as Motzkin sum numbers, which follow a specific recurrence relation. A generating function for these numbers produces a polynomial series that highlights their mathematical beauty. The discussion emphasizes the intricate relationship between mathematics and physics, suggesting that the exploration of such concepts can deepen appreciation for the mathematical framework underlying nature.
apostolosdt
Messages
178
Reaction score
204
My field is physics and I'm very cautious about the "math describing the Nature" attitude, but I can't help admiring the deep richness of mathematics!

The other day, I was checking about isotropic tensors. An isotropic tensor keeps its components in all coordinated systems transformed under rotation. Then, unexpectedly, I came across some beautiful remarks on the topic. Here are some of them.

How many isotropic tensors exist? There are only single rank-0, rank-2, and rank-3 tensors, respectively, a scalar, the Kronecker ##\delta^{ij}##, and the permutation symbol ##\epsilon_{ijk}##. There are no rank-1 isotropic tensors, that is, vectors.

Now, if one attempts to enumerate all the isotropic tensors, starting with the ones above and going to higher ranks, one gets the sequence:
$$1, 0, 1, 1, 3, 6, 15, 36, 91, 232, {\rm etc.} $$
These numbers are called ##{\it Motzkin\,sum\,numbers}## and obey a recurrence relation:
$$a_n = {n-1\over n+1}\left(2a_{n-1} + 3a_{n-2}\right)$$
with ##a(0) =1, a(1) = 0##.

There is also a generating function:
$$G(x) = {1\over 2x}\left(1 -\sqrt{1-3x\over 1+x}\right)$$
that produces the following polynomial series:
$$\sum_{n=0}^\infty a_n\, x^n = 1 + x^2 + x^3 + 3x^4 + 6x^5 + 15x^6 + \cdots$$
No need to draw your attention to the coefficients of the powers! Plain beautiful!
 
Last edited:
Mathematics news on Phys.org
To answer your question of "math describing nature" debate, you might enjoy this documentary featured on NOVA some years ago:

 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 78 ·
3
Replies
78
Views
6K
  • · Replies 125 ·
5
Replies
125
Views
19K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K