Riemann Integrability of Thomae's Function

Click For Summary
SUMMARY

The discussion focuses on the Riemann integrability of Thomae's function, defined as f(x) = 1/n for x = m/n in lowest terms and f(x) = 0 otherwise. Participants explore constructing a sequence of continuous functions, g_n(x) = x cos²ⁿ(p!πx), that converge uniformly to Thomae's function. A key theorem is referenced, stating that if a sequence of Riemann integrable functions converges uniformly to a function, then that function is also Riemann integrable. The conversation emphasizes the challenge of demonstrating uniform convergence and the need for a structured approach to defining the sequence of functions.

PREREQUISITES
  • Understanding of Riemann integrability and its criteria.
  • Familiarity with uniform convergence and its implications.
  • Knowledge of sequences of functions and continuity.
  • Basic concepts of rational numbers and their representation in lowest terms.
NEXT STEPS
  • Study the properties of Riemann integrable functions and their convergence criteria.
  • Learn about uniform convergence in the context of sequences of functions.
  • Explore the construction of sequences of functions that converge to discontinuous functions.
  • Investigate the relationship between points of continuity and Riemann integrability.
USEFUL FOR

Mathematics students, particularly those studying real analysis, educators teaching Riemann integration, and researchers interested in function convergence properties.

c1fn
Messages
4
Reaction score
0

Homework Statement


Show the Thomae's function f : [0,1] → ℝ which is defined by f(x) = \begin{cases} \frac{1}{n}, & \text{if $x = \frac{m}{n}$, where $m, n \in \mathbb{N}$ and are relatively prime} \\ 0, & \text{otherwise} \end{cases} is Riemann integrable.


Homework Equations


Thm: If fn : [a,b] → ℝ is Riemann integrable for each n, and fn → f uniformly on [a,b], then f is Riemann integrable.

Trying to do this without invoking any sort of measure theory/Lebesgue integration.


The Attempt at a Solution


I've been stumped on this one for awhile now. Basically I've been trying to construct a sequence of Riemann integrable functions from [0,1] to ℝ that are continuous (and therefore Riemann integrable) that converge uniformly to Thomae's function. Unfortunately, I haven't been able to construct such a sequence of functions. The function that I'm trying to "tweak" right now is:

gn : [0,1] → ℝ defined by g_n = x \cos^{2n}(p! \pi x).

I need to show that gn is continuous for each n (easy). I need to show that gn converges uniformly to the function g : [0,1] → ℝ given by

g(x) = \begin{cases} x, & \text{if $x=k/p!$, where $0 \leq k \leq p!$} \\ 0, & \text{otherwise} \end{cases}

Here lies a bit of a mental barrier for me. I know that I haven't showed that g(x) = f(x), but I'm having trouble showing that gn → g uniformly since the value of g depends pointwise on x. I argue that if x is of the form k/p!, where 0 ≤ k ≤ p!, then gn(x) → g(x) uniformly (i can show this). Then I argue that this implies that if y is "otherwise," then gn(y) → g(y) uniformly as well since g(y) ≤ g(x), where x is of the form mentioned above.

Anyways, I'm having a hard time believing my own argument. Does this work? If it doesn,t is it even possible to construct a sequence of continuous functions converging uniformly to Thomae's function?
 
Physics news on Phys.org
Do you know of any results relating the set of points of continuity to Riemann

integrability?
 
No I don't. I need to show this using uniform convergence (if that is possible).
 
A suggestion:

Try defining a sequence that mimicks/approaches the Thomae function.

Start with an enumeration of the rationals, and assume they are given

in reduced/lowest form. Then define f_n(x). You can

start by defining f_1(x)=1/m for x=a_1, and ? otherwise . Does that help? I'm sorry, I must go for a few hours; if I'm not back tonight, I will be back tomorrow.
 
Last edited:
Sorry I'm a bit confused when you say an enumeration of the rationals. Arn't the only rationals we're concerned about between 0 and 1? Can you elaborate a bit more on how you're defining f_n and what is a_1?
 
Yes, sorry, I meant the rationals in [0,1]. Since the rationals are countable,

we can arrange them as a sequence {rn} , which assigns to n the

n-th rational, and we assume we have these rationals in lowest terms, i.e., if

rn=an/bn, then :

gcd(an,bn)=1

( this reduction is always possible, e.g., by the

fund. thm of arithmetic ). Now, I'm trying to suggest how to construct the sequence : we

want a sequence {f_n} of

functions that converges to the Thomae function uniformly. We can then define the first

term f1 of the sequence like this:f1(r1)=f(a1/b1):=1/b1, and

f1(x)=0 for x in [0,1]\{r_1}; f_2(a_1)=1/b_1 ; f_2(a_2)=1/b_2 ; f:[0,1]\{r_1\/r_2}=?

Can you see how to continue defining f2(r_n), and then fn?

Does that help?
 
Last edited:
Yes. That makes perfect sense. Thank you. Currently I'm working on showing fn → f uniformly.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
26
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K