I Rolling ball, change of direction

AI Thread Summary
Applying a lateral force to a free-rolling ball on a plane introduces complex interactions involving friction and gyroscopic effects. When a force is exerted from the South, the ball rolls North at a constant speed. If a lateral force is then applied from the West, the trajectory of the ball is expected to change, potentially resulting in a North-East direction. The axis of rotation may not remain horizontal due to these interactions. Further insights from physics enthusiasts are sought to clarify the ball's motion and the behavior of its rotation axis.
jonbarril
Messages
7
Reaction score
0
Say I have a magic way to exert lateral forces on a free-rolling ball on a plane, with no slipping. Say I apply a force for a given period from the South, the ball starts rolling to the North and attains a constant speed. Then I suddenly apply the same force for the same period but from the West. What is the resulting path of the ball on the plane? What is the path of the balls apparent axis of rotation (how does it change from East-West to eventually North-South, does it remain horizontal)?

Thanks
--jon
 
Physics news on Phys.org
If you apply just a force at the ball's CoM, and it starts rolling, the you must have friction. If you then apply the lateral force you will have an interaction of friction gyroscopic effects, which can get quite complex and counter intuitive:

 
Last edited:
  • Like
Likes scottdave and PeroK
Forces are associated to accelerations.
How do you believe the trajectory will change?
 
It has been a long while since I took physics. I think the gyroscopic effect will work in favor of helping to turn the ball to the East. My guess is that the ball would end up rolling North-East. Not sure if the axis of rotation would stay flat. This is all complete conjecture. I'm hoping folks out there can give a more informed description of the ball's motion.
 
The rope is tied into the person (the load of 200 pounds) and the rope goes up from the person to a fixed pulley and back down to his hands. He hauls the rope to suspend himself in the air. What is the mechanical advantage of the system? The person will indeed only have to lift half of his body weight (roughly 100 pounds) because he now lessened the load by that same amount. This APPEARS to be a 2:1 because he can hold himself with half the force, but my question is: is that mechanical...
Let there be a person in a not yet optimally designed sled at h meters in height. Let this sled free fall but user can steer by tilting their body weight in the sled or by optimal sled shape design point it in some horizontal direction where it is wanted to go - in any horizontal direction but once picked fixed. How to calculate horizontal distance d achievable as function of height h. Thus what is f(h) = d. Put another way, imagine a helicopter rises to a height h, but then shuts off all...
Some physics textbook writer told me that Newton's first law applies only on bodies that feel no interactions at all. He said that if a body is on rest or moves in constant velocity, there is no external force acting on it. But I have heard another form of the law that says the net force acting on a body must be zero. This means there is interactions involved after all. So which one is correct?
Back
Top