- #1
redtree
- 322
- 13
Given that the root mean square (RMS) of a sine function is as follows:
RMS of (a*sin([tex]\omega[/tex]*r) = a / [tex]\sqrt{}2[/tex]
Let a = 1/[tex]\omega[/tex]
Thus
RMS of ((1/[tex]\omega[/tex])*sin([tex]\omega[/tex]*r)) = 1 / ([tex]\omega[/tex]*[tex]\sqrt{}2[/tex])
But for sinc([tex]\omega[/tex]*x), what is formula for the RMS?
RMS of (a*sin([tex]\omega[/tex]*r) = a / [tex]\sqrt{}2[/tex]
Let a = 1/[tex]\omega[/tex]
Thus
RMS of ((1/[tex]\omega[/tex])*sin([tex]\omega[/tex]*r)) = 1 / ([tex]\omega[/tex]*[tex]\sqrt{}2[/tex])
But for sinc([tex]\omega[/tex]*x), what is formula for the RMS?