MHB Roots of Equations & Sum of Inverses: $a=1,2,3,\dots,2011$

Click For Summary
The discussion focuses on finding the sum of the inverses of the roots of the quadratic equations defined by $x^2 - 2x - a^2 - a = 0$ for $a$ ranging from 1 to 2011. Participants highlight issues with the last step of the calculation, indicating that it was incorrect initially. A correction is proposed to accurately compute the sum $\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n})$. The roots of the equations are denoted as $(\alpha_n, \beta_n)$ for each value of $a$. The discussion emphasizes the importance of verifying calculations in mathematical problem-solving.
Albert1
Messages
1,221
Reaction score
0
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$

$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$

The last step calculation was not correct. it is corrected to $- \dfrac{2011}{1006}$ based on comment
 
Last edited:
kaliprasad said:
$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$
the last step ,calculation not correct
 
Albert said:
the last step ,calculation not correct

corrected the last step in the calculation
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
31
Views
4K
Replies
1
Views
2K