MHB Roots of Equations & Sum of Inverses: $a=1,2,3,\dots,2011$

AI Thread Summary
The discussion focuses on finding the sum of the inverses of the roots of the quadratic equations defined by $x^2 - 2x - a^2 - a = 0$ for $a$ ranging from 1 to 2011. Participants highlight issues with the last step of the calculation, indicating that it was incorrect initially. A correction is proposed to accurately compute the sum $\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n})$. The roots of the equations are denoted as $(\alpha_n, \beta_n)$ for each value of $a$. The discussion emphasizes the importance of verifying calculations in mathematical problem-solving.
Albert1
Messages
1,221
Reaction score
0
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$

$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$

The last step calculation was not correct. it is corrected to $- \dfrac{2011}{1006}$ based on comment
 
Last edited:
kaliprasad said:
$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$
the last step ,calculation not correct
 
Albert said:
the last step ,calculation not correct

corrected the last step in the calculation
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top