Roots of Equations & Sum of Inverses: $a=1,2,3,\dots,2011$

Click For Summary

Discussion Overview

The discussion revolves around finding the sum of the inverses of the roots of a quadratic equation defined for integer values of \( a \) from 1 to 2011. The specific equation is \( x^2 - 2x - a^2 - a = 0 \), and participants are tasked with calculating \( \sum_{n=1}^{2011}(\frac{1}{\alpha_n}+\frac{1}{\beta_n}) \), where \( \alpha_n \) and \( \beta_n \) are the roots for each value of \( a \).

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Participants are asked to compute the sum of the inverses of the roots for the given quadratic equations.
  • Some participants express that there are errors in the last step of the calculation.
  • Others indicate that they have corrected the last step in the calculation, though the specifics of the correction are not detailed.

Areas of Agreement / Disagreement

There appears to be disagreement regarding the correctness of the last step in the calculations, with some participants asserting that it is incorrect while others claim to have made corrections.

Contextual Notes

The discussion lacks detailed explanations of the corrections made, and the assumptions underlying the calculations are not fully articulated.

Albert1
Messages
1,221
Reaction score
0
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$
 
Last edited:
Mathematics news on Phys.org
Albert said:
$a=1,2,3,4,5,------2011$, the roots of the equations $x^2-2x-a^2-a=0,$ are :
$(\alpha_1,\beta_1),(\alpha_2,\beta_2),----------,(\alpha_{2011},\beta_{2011})$ respectively
please find :
$\sum_{n=1}^{2011}(\dfrac{1}{\alpha_n}+\dfrac {1}{\beta_n})$

$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$

The last step calculation was not correct. it is corrected to $- \dfrac{2011}{1006}$ based on comment
 
Last edited:
kaliprasad said:
$(\alpha_n,\beta_n)$ are roots of equation $x^2-2x-n^2-n=0$
so
$\alpha_n+\beta_n= 2$
$(\alpha_n\beta_n)=- (n^2+n) = -n(n+1)$
hence
$\dfrac{1}{\alpha_n}+\dfrac{1}{\beta_n}$
= $\dfrac{\alpha_n+\beta_n}{\alpha_n\beta_n}$
= $\dfrac{-2}{n^2+n}$
= -2$(\dfrac{1}{n}-\dfrac{1}{n+1})$

now the above is telesopic sum and the sum of 2011 terms is
-2$(1 -\dfrac{1}{2012})$
=$- \dfrac{4013}{2012}$
the last step ,calculation not correct
 
Albert said:
the last step ,calculation not correct

corrected the last step in the calculation
 

Similar threads

Replies
4
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
Replies
31
Views
4K
Replies
1
Views
2K
Replies
3
Views
2K